<!doctype html>

<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><script type="text/javascript">

      var _gaq = _gaq || [];
      _gaq.push(['_setAccount', 'UA-55120145-3']);
      _gaq.push(['_trackPageview']);

      (function() {
        var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
        ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
        var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
      })();
    </script>
    <title>pyFTS.common.Util &#8212; pyFTS 1.4 documentation</title>
    <link rel="stylesheet" href="../../../_static/bizstyle.css" type="text/css" />
    <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
    <script type="text/javascript" src="../../../_static/documentation_options.js"></script>
    <script type="text/javascript" src="../../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../../_static/doctools.js"></script>
    <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <script type="text/javascript" src="../../../_static/bizstyle.js"></script>
    <link rel="index" title="Index" href="../../../genindex.html" />
    <link rel="search" title="Search" href="../../../search.html" />
    <meta name="viewport" content="width=device-width,initial-scale=1.0">
    <!--[if lt IE 9]>
    <script type="text/javascript" src="_static/css3-mediaqueries.js"></script>
    <![endif]-->
  </head><body>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.4 documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../../index.html" accesskey="U">Module code</a> &#187;</li> 
      </ul>
    </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="../../../index.html">
              <img class="logo" src="../../../_static/logo_heading2.png" alt="Logo"/>
            </a></p>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <div class="searchformwrapper">
    <form class="search" action="../../../search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    </div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <h1>Source code for pyFTS.common.Util</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Common facilities for pyFTS</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="kn">import</span> <span class="nn">time</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">dill</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.cm</span> <span class="k">as</span> <span class="nn">cmx</span>
<span class="kn">import</span> <span class="nn">matplotlib.colors</span> <span class="k">as</span> <span class="nn">pltcolors</span>
<span class="kn">from</span> <span class="nn">pyFTS.probabilistic</span> <span class="k">import</span> <span class="n">ProbabilityDistribution</span>
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">Transformations</span>




<div class="viewcode-block" id="plot_compared_intervals_ahead"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_compared_intervals_ahead">[docs]</a><span class="k">def</span> <span class="nf">plot_compared_intervals_ahead</span><span class="p">(</span><span class="n">original</span><span class="p">,</span> <span class="n">models</span><span class="p">,</span> <span class="n">colors</span><span class="p">,</span> <span class="n">distributions</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">,</span> <span class="n">intervals</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
                               <span class="n">save</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">tam</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">resolution</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
                               <span class="n">cmap</span><span class="o">=</span><span class="s1">&#39;Blues&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mf">1.5</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Plot the forecasts of several one step ahead models, by point or by interval</span>

<span class="sd">    :param original: Original time series data (list)</span>
<span class="sd">    :param models: List of models to compare</span>
<span class="sd">    :param colors: List of models colors</span>
<span class="sd">    :param distributions: True to plot a distribution</span>
<span class="sd">    :param time_from: index of data poit to start the ahead forecasting</span>
<span class="sd">    :param time_to: number of steps ahead to forecast</span>
<span class="sd">    :param interpol: Fill space between distribution plots</span>
<span class="sd">    :param save: Save the picture on file</span>
<span class="sd">    :param file: Filename to save the picture</span>
<span class="sd">    :param tam: Size of the picture</span>
<span class="sd">    :param resolution:</span>
<span class="sd">    :param cmap: Color map to be used on distribution plot</span>
<span class="sd">    :param option: Distribution type to be passed for models</span>
<span class="sd">    :return:</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="n">tam</span><span class="p">)</span>
    <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>

    <span class="n">cm</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
    <span class="n">cNorm</span> <span class="o">=</span> <span class="n">pltcolors</span><span class="o">.</span><span class="n">Normalize</span><span class="p">(</span><span class="n">vmin</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">vmax</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">scalarMap</span> <span class="o">=</span> <span class="n">cmx</span><span class="o">.</span><span class="n">ScalarMappable</span><span class="p">(</span><span class="n">norm</span><span class="o">=</span><span class="n">cNorm</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cm</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">resolution</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> <span class="n">resolution</span> <span class="o">=</span> <span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">original</span><span class="p">)</span> <span class="o">-</span> <span class="nb">min</span><span class="p">(</span><span class="n">original</span><span class="p">))</span> <span class="o">/</span> <span class="mi">100</span>

    <span class="n">mi</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">ma</span> <span class="o">=</span> <span class="p">[]</span>

    <span class="k">for</span> <span class="n">count</span><span class="p">,</span> <span class="n">fts</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">models</span><span class="p">,</span> <span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">fts</span><span class="o">.</span><span class="n">has_probability_forecasting</span> <span class="ow">and</span> <span class="n">distributions</span><span class="p">[</span><span class="n">count</span><span class="p">]:</span>
            <span class="n">density</span> <span class="o">=</span> <span class="n">fts</span><span class="o">.</span><span class="n">forecast_ahead_distribution</span><span class="p">(</span><span class="n">original</span><span class="p">[</span><span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">:</span><span class="n">time_from</span><span class="p">],</span> <span class="n">time_to</span><span class="p">,</span>
                                                      <span class="n">resolution</span><span class="o">=</span><span class="n">resolution</span><span class="p">)</span>

            <span class="c1">#plot_density_scatter(ax, cmap, density, fig, resolution, time_from, time_to)</span>
            <span class="n">plot_density_rectange</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cm</span><span class="p">,</span> <span class="n">density</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">)</span>

        <span class="k">if</span> <span class="n">fts</span><span class="o">.</span><span class="n">has_interval_forecasting</span> <span class="ow">and</span> <span class="n">intervals</span><span class="p">:</span>
            <span class="n">forecasts</span> <span class="o">=</span> <span class="n">fts</span><span class="o">.</span><span class="n">forecast_ahead_interval</span><span class="p">(</span><span class="n">original</span><span class="p">[</span><span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">:</span><span class="n">time_from</span><span class="p">],</span> <span class="n">time_to</span><span class="p">)</span>
            <span class="n">lower</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
            <span class="n">upper</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
            <span class="n">mi</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">min</span><span class="p">(</span><span class="n">lower</span><span class="p">))</span>
            <span class="n">ma</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">upper</span><span class="p">))</span>
            <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">):</span>
                <span class="n">lower</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
                <span class="n">upper</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
            <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lower</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">count</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="n">fts</span><span class="o">.</span><span class="n">shortname</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
            <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">upper</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">count</span><span class="p">],</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="o">*</span><span class="mf">1.5</span><span class="p">)</span>

    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">original</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Original&quot;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="o">*</span><span class="mf">1.5</span><span class="p">)</span>
    <span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
    <span class="k">if</span> <span class="kc">True</span> <span class="ow">in</span> <span class="n">distributions</span><span class="p">:</span>
        <span class="n">lgd</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">lgd</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">bbox_to_anchor</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
    <span class="n">_mi</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">mi</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">_mi</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
        <span class="n">_mi</span> <span class="o">*=</span> <span class="mf">1.1</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">_mi</span> <span class="o">*=</span> <span class="mf">0.9</span>
    <span class="n">_ma</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">ma</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">_ma</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
        <span class="n">_ma</span> <span class="o">*=</span> <span class="mf">0.9</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">_ma</span> <span class="o">*=</span> <span class="mf">1.1</span>

    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="n">_mi</span><span class="p">,</span> <span class="n">_ma</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;F(T)&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;T&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">original</span><span class="p">)])</span>

    <span class="n">show_and_save_image</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">file</span><span class="p">,</span> <span class="n">save</span><span class="p">,</span> <span class="n">lgd</span><span class="o">=</span><span class="n">lgd</span><span class="p">)</span></div>



<div class="viewcode-block" id="plot_density_rectange"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_density_rectange">[docs]</a><span class="k">def</span> <span class="nf">plot_density_rectange</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cmap</span><span class="p">,</span> <span class="n">density</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Auxiliar function to plot_compared_intervals_ahead</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="k">import</span> <span class="n">Rectangle</span>
    <span class="kn">from</span> <span class="nn">matplotlib.collections</span> <span class="k">import</span> <span class="n">PatchCollection</span>
    <span class="n">patches</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">colors</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">index</span><span class="p">:</span>
        <span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">columns</span><span class="p">:</span>
            <span class="n">s</span> <span class="o">=</span> <span class="n">Rectangle</span><span class="p">((</span><span class="n">time_from</span> <span class="o">+</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">fill</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">lw</span> <span class="o">=</span> <span class="mi">0</span><span class="p">)</span>
            <span class="n">patches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
            <span class="n">colors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">density</span><span class="p">[</span><span class="n">y</span><span class="p">][</span><span class="n">x</span><span class="p">]</span><span class="o">*</span><span class="mi">5</span><span class="p">)</span>
    <span class="n">pc</span> <span class="o">=</span> <span class="n">PatchCollection</span><span class="p">(</span><span class="n">patches</span><span class="o">=</span><span class="n">patches</span><span class="p">,</span> <span class="n">match_original</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">pc</span><span class="o">.</span><span class="n">set_clim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
    <span class="n">pc</span><span class="o">.</span><span class="n">set_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
    <span class="n">pc</span><span class="o">.</span><span class="n">set_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">colors</span><span class="p">))</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">add_collection</span><span class="p">(</span><span class="n">pc</span><span class="p">)</span>
    <span class="n">cb</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pc</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
    <span class="n">cb</span><span class="o">.</span><span class="n">set_label</span><span class="p">(</span><span class="s1">&#39;Density&#39;</span><span class="p">)</span></div>


<div class="viewcode-block" id="plot_probability_distributions"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_probability_distributions">[docs]</a><span class="k">def</span> <span class="nf">plot_probability_distributions</span><span class="p">(</span><span class="n">pmfs</span><span class="p">,</span> <span class="n">lcolors</span><span class="p">,</span> <span class="n">tam</span><span class="o">=</span><span class="p">[</span><span class="mi">15</span><span class="p">,</span> <span class="mi">7</span><span class="p">]):</span>
    <span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="n">tam</span><span class="p">)</span>
    <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>

    <span class="k">for</span> <span class="n">k</span><span class="p">,</span><span class="n">m</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">pmfs</span><span class="p">,</span><span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
        <span class="n">m</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">lcolors</span><span class="p">[</span><span class="n">k</span><span class="p">])</span>

    <span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">)</span></div>

<div class="viewcode-block" id="plot_distribution"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_distribution">[docs]</a><span class="k">def</span> <span class="nf">plot_distribution</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cmap</span><span class="p">,</span> <span class="n">probabilitydist</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">reference_data</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="sd">&#39;&#39;&#39;</span>
<span class="sd">    Plot forecasted ProbabilityDistribution objects on a matplotlib axis</span>

<span class="sd">    :param ax: matplotlib axis</span>
<span class="sd">    :param cmap: matplotlib colormap name</span>
<span class="sd">    :param probabilitydist: list of ProbabilityDistribution objects</span>
<span class="sd">    :param fig: matplotlib figure</span>
<span class="sd">    :param time_from: starting time (on x axis) to begin the plots</span>
<span class="sd">    :param reference_data:</span>
<span class="sd">    :return:</span>
<span class="sd">    &#39;&#39;&#39;</span>
    <span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="k">import</span> <span class="n">Rectangle</span>
    <span class="kn">from</span> <span class="nn">matplotlib.collections</span> <span class="k">import</span> <span class="n">PatchCollection</span>
    <span class="n">patches</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">colors</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">dt</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">probabilitydist</span><span class="p">):</span>
        <span class="n">disp</span> <span class="o">=</span> <span class="mf">0.0</span>
        <span class="k">if</span> <span class="n">reference_data</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">disp</span> <span class="o">=</span> <span class="n">reference_data</span><span class="p">[</span><span class="n">time_from</span><span class="o">+</span><span class="n">ct</span><span class="p">]</span>

        <span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">dt</span><span class="o">.</span><span class="n">bins</span><span class="p">:</span>
            <span class="n">s</span> <span class="o">=</span> <span class="n">Rectangle</span><span class="p">((</span><span class="n">time_from</span><span class="o">+</span><span class="n">ct</span><span class="p">,</span> <span class="n">y</span><span class="o">+</span><span class="n">disp</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dt</span><span class="o">.</span><span class="n">resolution</span><span class="p">,</span> <span class="n">fill</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">lw</span> <span class="o">=</span> <span class="mi">0</span><span class="p">)</span>
            <span class="n">patches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
            <span class="n">colors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dt</span><span class="o">.</span><span class="n">density</span><span class="p">(</span><span class="n">y</span><span class="p">))</span>
    <span class="n">scale</span> <span class="o">=</span> <span class="n">Transformations</span><span class="o">.</span><span class="n">Scale</span><span class="p">()</span>
    <span class="n">colors</span> <span class="o">=</span> <span class="n">scale</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">colors</span><span class="p">)</span>
    <span class="n">pc</span> <span class="o">=</span> <span class="n">PatchCollection</span><span class="p">(</span><span class="n">patches</span><span class="o">=</span><span class="n">patches</span><span class="p">,</span> <span class="n">match_original</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">pc</span><span class="o">.</span><span class="n">set_clim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
    <span class="n">pc</span><span class="o">.</span><span class="n">set_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
    <span class="n">pc</span><span class="o">.</span><span class="n">set_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">colors</span><span class="p">))</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">add_collection</span><span class="p">(</span><span class="n">pc</span><span class="p">)</span>
    <span class="n">cb</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pc</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
    <span class="n">cb</span><span class="o">.</span><span class="n">set_label</span><span class="p">(</span><span class="s1">&#39;Density&#39;</span><span class="p">)</span></div>


<div class="viewcode-block" id="plot_interval"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_interval">[docs]</a><span class="k">def</span> <span class="nf">plot_interval</span><span class="p">(</span><span class="n">axis</span><span class="p">,</span> <span class="n">intervals</span><span class="p">,</span> <span class="n">order</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span> <span class="n">typeonlegend</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">&#39;-&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
    <span class="sd">&#39;&#39;&#39;</span>
<span class="sd">    Plot forecasted intervals on matplotlib</span>

<span class="sd">    :param axis: matplotlib axis</span>
<span class="sd">    :param intervals: list of forecasted intervals</span>
<span class="sd">    :param order: order of the model that create the forecasts</span>
<span class="sd">    :param label: figure label</span>
<span class="sd">    :param color: matplotlib color name</span>
<span class="sd">    :param typeonlegend:</span>
<span class="sd">    :param ls: matplotlib line style</span>
<span class="sd">    :param linewidth: matplotlib width</span>
<span class="sd">    :return:</span>
<span class="sd">    &#39;&#39;&#39;</span>
    <span class="n">lower</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">intervals</span><span class="p">]</span>
    <span class="n">upper</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">intervals</span><span class="p">]</span>
    <span class="n">mi</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">lower</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.95</span>
    <span class="n">ma</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">upper</span><span class="p">)</span> <span class="o">*</span> <span class="mf">1.05</span>
    <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">order</span><span class="p">):</span>
        <span class="n">lower</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
        <span class="n">upper</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">typeonlegend</span><span class="p">:</span> <span class="n">label</span> <span class="o">+=</span> <span class="s2">&quot; (Interval)&quot;</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lower</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="n">ls</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">upper</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="n">ls</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
    <span class="k">return</span> <span class="p">[</span><span class="n">mi</span><span class="p">,</span> <span class="n">ma</span><span class="p">]</span></div>


<div class="viewcode-block" id="plot_rules"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_rules">[docs]</a><span class="k">def</span> <span class="nf">plot_rules</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">rules_by_axis</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
    <span class="sd">&#39;&#39;&#39;</span>
<span class="sd">    Plot the FLRG rules of a FTS model on a matplotlib axis</span>

<span class="sd">    :param model: FTS model</span>
<span class="sd">    :param size: figure size</span>
<span class="sd">    :param axis: matplotlib axis</span>
<span class="sd">    :param rules_by_axis: number of rules plotted by column</span>
<span class="sd">    :param columns: number of columns</span>
<span class="sd">    :return:</span>
<span class="sd">    &#39;&#39;&#39;</span>
    <span class="k">if</span> <span class="n">axis</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">rules_by_axis</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">rows</span> <span class="o">=</span> <span class="mi">1</span>
    <span class="k">elif</span> <span class="n">axis</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">rules_by_axis</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">rows</span> <span class="o">=</span> <span class="p">(((</span><span class="nb">len</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">flrgs</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span><span class="o">//</span><span class="n">rules_by_axis</span><span class="p">))</span> <span class="o">//</span> <span class="n">columns</span><span class="p">)</span><span class="o">+</span><span class="mi">1</span>

    <span class="n">fig</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="n">rows</span><span class="p">,</span> <span class="n">ncols</span><span class="o">=</span><span class="n">columns</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="n">size</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">rules_by_axis</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">draw_sets_on_axis</span><span class="p">(</span><span class="n">axis</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">size</span><span class="p">)</span>

    <span class="n">_lhs</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">model</span><span class="o">.</span><span class="n">is_high_order</span> <span class="k">else</span> <span class="n">model</span><span class="o">.</span><span class="n">flrgs</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>

    <span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">key</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">_lhs</span><span class="p">):</span>

        <span class="n">xticks</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="n">xtickslabels</span> <span class="o">=</span> <span class="p">[]</span>

        <span class="k">if</span> <span class="n">rules_by_axis</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">ax</span> <span class="o">=</span> <span class="n">axis</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">colcount</span> <span class="o">=</span> <span class="p">(</span><span class="n">ct</span> <span class="o">//</span> <span class="n">rules_by_axis</span><span class="p">)</span> <span class="o">%</span> <span class="n">columns</span>
            <span class="n">rowcount</span> <span class="o">=</span> <span class="p">(</span><span class="n">ct</span> <span class="o">//</span> <span class="n">rules_by_axis</span><span class="p">)</span> <span class="o">//</span> <span class="n">columns</span>

            <span class="k">if</span> <span class="n">rows</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="ow">and</span> <span class="n">columns</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
                <span class="n">ax</span> <span class="o">=</span> <span class="n">axis</span><span class="p">[</span><span class="n">rowcount</span><span class="p">,</span> <span class="n">colcount</span><span class="p">]</span>
            <span class="k">elif</span> <span class="n">columns</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
                <span class="n">ax</span> <span class="o">=</span> <span class="n">axis</span><span class="p">[</span><span class="n">rowcount</span><span class="p">]</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">ax</span> <span class="o">=</span> <span class="n">axis</span>

            <span class="k">if</span> <span class="n">ct</span> <span class="o">%</span> <span class="n">rules_by_axis</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
                <span class="n">draw_sets_on_axis</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">size</span><span class="p">)</span>

        <span class="k">if</span> <span class="ow">not</span> <span class="n">model</span><span class="o">.</span><span class="n">is_high_order</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
                <span class="n">x</span> <span class="o">=</span> <span class="p">(</span><span class="n">ct</span> <span class="o">%</span> <span class="n">rules_by_axis</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
                <span class="n">flrg</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
                <span class="n">y</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">key</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span>
                <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">x</span><span class="p">],[</span><span class="n">y</span><span class="p">],</span><span class="s1">&#39;o&#39;</span><span class="p">)</span>
                <span class="n">xticks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
                <span class="n">xtickslabels</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
                <span class="k">for</span> <span class="n">rhs</span> <span class="ow">in</span> <span class="n">flrg</span><span class="o">.</span><span class="n">RHS</span><span class="p">:</span>
                    <span class="n">dest</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">rhs</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span>
                    <span class="n">ax</span><span class="o">.</span><span class="n">arrow</span><span class="p">(</span><span class="n">x</span><span class="o">+.</span><span class="mi">1</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="n">dest</span> <span class="o">-</span> <span class="n">y</span><span class="p">,</span> <span class="c1">#length_includes_head=True,</span>
                               <span class="n">head_width</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">head_length</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="s1">&#39;full&#39;</span><span class="p">,</span> <span class="n">overhang</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
                               <span class="n">fc</span><span class="o">=</span><span class="s1">&#39;k&#39;</span><span class="p">,</span> <span class="n">ec</span><span class="o">=</span><span class="s1">&#39;k&#39;</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">flrg</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
            <span class="n">x</span> <span class="o">=</span> <span class="p">(</span><span class="n">ct</span><span class="o">%</span><span class="n">rules_by_axis</span><span class="p">)</span><span class="o">*</span><span class="n">model</span><span class="o">.</span><span class="n">order</span> <span class="o">+</span> <span class="mi">1</span>
            <span class="k">for</span> <span class="n">ct2</span><span class="p">,</span> <span class="n">lhs</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">):</span>
                <span class="n">y</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">lhs</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span>
                <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">x</span><span class="o">+</span><span class="n">ct2</span><span class="p">],</span> <span class="p">[</span><span class="n">y</span><span class="p">],</span> <span class="s1">&#39;o&#39;</span><span class="p">)</span>
                <span class="n">xticks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">x</span><span class="o">+</span><span class="n">ct2</span><span class="p">)</span>
                <span class="n">xtickslabels</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">lhs</span><span class="p">)</span>
            <span class="k">for</span> <span class="n">ct2</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">):</span>
                <span class="n">fs1</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="n">ct2</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
                <span class="n">fs2</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="n">ct2</span><span class="p">]</span>
                <span class="n">y</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">fs1</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span>
                <span class="n">dest</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">fs2</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span>
                <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">x</span><span class="o">+</span><span class="n">ct2</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="n">x</span><span class="o">+</span><span class="n">ct2</span><span class="p">],</span> <span class="p">[</span><span class="n">y</span><span class="p">,</span><span class="n">dest</span><span class="p">],</span><span class="s1">&#39;-&#39;</span><span class="p">)</span>

            <span class="n">y</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">centroid</span>
            <span class="k">for</span> <span class="n">rhs</span> <span class="ow">in</span> <span class="n">flrg</span><span class="o">.</span><span class="n">RHS</span><span class="p">:</span>
                <span class="n">dest</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">rhs</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span>
                <span class="n">ax</span><span class="o">.</span><span class="n">arrow</span><span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="n">order</span> <span class="o">-</span><span class="mi">1</span> <span class="o">+</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="n">dest</span> <span class="o">-</span> <span class="n">y</span><span class="p">,</span>  <span class="c1"># length_includes_head=True,</span>
                           <span class="n">head_width</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">head_length</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="s1">&#39;full&#39;</span><span class="p">,</span> <span class="n">overhang</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
                           <span class="n">fc</span><span class="o">=</span><span class="s1">&#39;k&#39;</span><span class="p">,</span> <span class="n">ec</span><span class="o">=</span><span class="s1">&#39;k&#39;</span><span class="p">)</span>


        <span class="n">ax</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">(</span><span class="n">xticks</span><span class="p">)</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">(</span><span class="n">xtickslabels</span><span class="p">)</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="n">rules_by_axis</span><span class="o">*</span><span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="o">+</span><span class="mi">1</span><span class="p">])</span>

    <span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span></div>


<div class="viewcode-block" id="draw_sets_on_axis"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.draw_sets_on_axis">[docs]</a><span class="k">def</span> <span class="nf">draw_sets_on_axis</span><span class="p">(</span><span class="n">axis</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">size</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">axis</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">fig</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">nrows</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">ncols</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="n">size</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">key</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">):</span>
        <span class="n">fs</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
        <span class="n">axis</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">fs</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">fs</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
        <span class="n">axis</span><span class="o">.</span><span class="n">axhline</span><span class="p">(</span><span class="n">fs</span><span class="o">.</span><span class="n">centroid</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s2">&quot;lightgray&quot;</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">)])</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">)))</span>
    <span class="n">tmp</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;&#39;</span><span class="p">]</span>
    <span class="n">tmp</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">)</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">min</span><span class="p">,</span> <span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">max</span><span class="p">])</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">set_yticks</span><span class="p">([</span><span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">])</span>
    <span class="n">axis</span><span class="o">.</span><span class="n">set_yticklabels</span><span class="p">([</span><span class="nb">str</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span> <span class="o">+</span> <span class="s2">&quot; - &quot;</span> <span class="o">+</span> <span class="n">k</span>
                          <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">])</span></div>


<span class="n">current_milli_time</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">))</span>


<div class="viewcode-block" id="uniquefilename"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.uniquefilename">[docs]</a><span class="k">def</span> <span class="nf">uniquefilename</span><span class="p">(</span><span class="n">name</span><span class="p">):</span>
    <span class="k">if</span> <span class="s1">&#39;.&#39;</span> <span class="ow">in</span> <span class="n">name</span><span class="p">:</span>
        <span class="n">tmp</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">)</span>
        <span class="k">return</span>  <span class="n">tmp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">current_milli_time</span><span class="p">())</span> <span class="o">+</span> <span class="s1">&#39;.&#39;</span> <span class="o">+</span> <span class="n">tmp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">name</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">current_milli_time</span><span class="p">())</span></div>



<div class="viewcode-block" id="show_and_save_image"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.show_and_save_image">[docs]</a><span class="k">def</span> <span class="nf">show_and_save_image</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">file</span><span class="p">,</span> <span class="n">flag</span><span class="p">,</span> <span class="n">lgd</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Show and image and save on file</span>

<span class="sd">    :param fig: Matplotlib Figure object</span>
<span class="sd">    :param file: filename to save the picture</span>
<span class="sd">    :param flag: if True the image will be saved</span>
<span class="sd">    :param lgd: legend</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
    <span class="k">if</span> <span class="n">flag</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">lgd</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">fig</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">additional_artists</span><span class="o">=</span><span class="n">lgd</span><span class="p">,</span><span class="n">bbox_inches</span><span class="o">=</span><span class="s1">&#39;tight&#39;</span><span class="p">)</span>  <span class="c1">#bbox_extra_artists=(lgd,), )</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">fig</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="n">file</span><span class="p">)</span>
        <span class="n">plt</span><span class="o">.</span><span class="n">close</span><span class="p">(</span><span class="n">fig</span><span class="p">)</span></div>


<div class="viewcode-block" id="enumerate2"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.enumerate2">[docs]</a><span class="k">def</span> <span class="nf">enumerate2</span><span class="p">(</span><span class="n">xs</span><span class="p">,</span> <span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
    <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">xs</span><span class="p">:</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">start</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
        <span class="n">start</span> <span class="o">+=</span> <span class="n">step</span></div>


<div class="viewcode-block" id="sliding_window"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.sliding_window">[docs]</a><span class="k">def</span> <span class="nf">sliding_window</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">windowsize</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">inc</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Sliding window method of cross validation for time series</span>

<span class="sd">    :param data: the entire dataset</span>
<span class="sd">    :param windowsize: window size</span>
<span class="sd">    :param train: percentual of the window size will be used for training the models</span>
<span class="sd">    :param inc: percentual of data used for slide the window</span>
<span class="sd">    :return: window count, training set, test set</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
    <span class="n">ttrain</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">windowsize</span> <span class="o">*</span> <span class="n">train</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span>
    <span class="n">ic</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">windowsize</span> <span class="o">*</span> <span class="n">inc</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span>

    <span class="n">progressbar</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;progress&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>

    <span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">l</span><span class="o">-</span><span class="n">windowsize</span><span class="o">+</span><span class="n">ic</span><span class="p">,</span><span class="n">ic</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">progressbar</span><span class="p">:</span>
        <span class="kn">from</span> <span class="nn">tqdm</span> <span class="k">import</span> <span class="n">tqdm</span>
        <span class="n">rng</span> <span class="o">=</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">rng</span><span class="p">)</span>

    <span class="k">for</span> <span class="n">count</span> <span class="ow">in</span> <span class="n">rng</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">count</span> <span class="o">+</span> <span class="n">windowsize</span> <span class="o">&gt;</span> <span class="n">l</span><span class="p">:</span>
            <span class="n">_end</span> <span class="o">=</span> <span class="n">l</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">_end</span> <span class="o">=</span> <span class="n">count</span> <span class="o">+</span> <span class="n">windowsize</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">count</span><span class="p">,</span>  <span class="n">data</span><span class="p">[</span><span class="n">count</span> <span class="p">:</span> <span class="n">count</span> <span class="o">+</span> <span class="n">ttrain</span><span class="p">],</span> <span class="n">data</span><span class="p">[</span><span class="n">count</span> <span class="o">+</span> <span class="n">ttrain</span> <span class="p">:</span> <span class="n">_end</span><span class="p">]</span>  <span class="p">)</span></div>


<div class="viewcode-block" id="persist_obj"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.persist_obj">[docs]</a><span class="k">def</span> <span class="nf">persist_obj</span><span class="p">(</span><span class="n">obj</span><span class="p">,</span> <span class="n">file</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Persist an object on filesystem. This function depends on Dill package</span>

<span class="sd">    :param obj: object on memory</span>
<span class="sd">    :param file: file name to store the object</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="s1">&#39;wb&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">_file</span><span class="p">:</span>
            <span class="n">dill</span><span class="o">.</span><span class="n">dump</span><span class="p">(</span><span class="n">obj</span><span class="p">,</span> <span class="n">_file</span><span class="p">)</span>
    <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">ex</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;File </span><span class="si">{}</span><span class="s2"> could not be saved due exception </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">ex</span><span class="p">))</span></div>


<div class="viewcode-block" id="load_obj"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.load_obj">[docs]</a><span class="k">def</span> <span class="nf">load_obj</span><span class="p">(</span><span class="n">file</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Load to memory an object stored filesystem. This function depends on Dill package</span>

<span class="sd">    :param file: file name where the object is stored</span>
<span class="sd">    :return: object</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="s1">&#39;rb&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">_file</span><span class="p">:</span>
        <span class="n">obj</span> <span class="o">=</span> <span class="n">dill</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">_file</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">obj</span></div>


<div class="viewcode-block" id="persist_env"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.persist_env">[docs]</a><span class="k">def</span> <span class="nf">persist_env</span><span class="p">(</span><span class="n">file</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Persist an entire environment on file. This function depends on Dill package</span>

<span class="sd">    :param file: file name to store the environment</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">dill</span><span class="o">.</span><span class="n">dump_session</span><span class="p">(</span><span class="n">file</span><span class="p">)</span></div>


<div class="viewcode-block" id="load_env"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.load_env">[docs]</a><span class="k">def</span> <span class="nf">load_env</span><span class="p">(</span><span class="n">file</span><span class="p">):</span>
    <span class="n">dill</span><span class="o">.</span><span class="n">load_session</span><span class="p">(</span><span class="n">file</span><span class="p">)</span></div>



</pre></div>

          </div>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.4 documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../../index.html" >Module code</a> &#187;</li> 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.2.
    </div>
  </body>
</html>