pyFTS.models.ensemble package¶
Submodules¶
pyFTS.models.ensemble.ensemble module¶
EnsembleFTS wraps several FTS methods to ensemble their forecasts, providing point, interval and probabilistic forecasting.
Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.
-
class
pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS(**kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTSCreates an EnsembleFTS with all point forecast methods, sharing the same partitioner
-
set_transformations(model)¶
-
train(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
class
pyFTS.models.ensemble.ensemble.EnsembleFTS(**kwargs)¶ Bases:
pyFTS.common.fts.FTSEnsemble FTS
-
append_model(model)¶ Append a new trained model to the ensemble
Parameters: model – FTS model
-
forecast(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_ahead_distribution(data, steps, **kwargs)¶ Probabilistic forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted Probability Distributions
-
forecast_ahead_interval(data, steps, **kwargs)¶ Interval forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted intervals
-
forecast_distribution(data, **kwargs)¶ Probabilistic forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
forecast_interval(data, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
get_UoD()¶ Returns the interval of the known bounds of the universe of discourse (UoD), i. e., the known minimum and maximum values of the time series.
Returns: A set with the lower and the upper bounds of the UoD
-
get_distribution_interquantile(forecasts, alpha)¶
-
get_interval(forecasts)¶
-
get_models_forecasts(data)¶
-
get_point(forecasts, **kwargs)¶
-
train(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
class
pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS(**kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTSAn homogeneous FTS method ensemble with variations on partitionings and orders.
-
train(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
pyFTS.models.ensemble.ensemble.sampler(data, quantiles, bounds=False)¶
pyFTS.models.ensemble.multiseasonal module¶
Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.
-
class
pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS(name, **kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS-
forecast_distribution(data, **kwargs)¶ Probabilistic forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
train(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
update_uod(data)¶
-
-
pyFTS.models.ensemble.multiseasonal.train_individual_model(partitioner, train_data, indexer)¶
Module contents¶
Meta FTS that aggregates other FTS methods