<!doctype html> <html> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0"><script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-55120145-3']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script> <title>pyFTS.probabilistic package — pyFTS 1.6 documentation</title> <link rel="stylesheet" href="_static/bizstyle.css" type="text/css" /> <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> <script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script> <script src="_static/jquery.js"></script> <script src="_static/underscore.js"></script> <script src="_static/doctools.js"></script> <script src="_static/language_data.js"></script> <script src="_static/bizstyle.js"></script> <link rel="index" title="Index" href="genindex.html" /> <link rel="search" title="Search" href="search.html" /> <link rel="prev" title="pyFTS.partitioners package" href="pyFTS.partitioners.html" /> <meta name="viewport" content="width=device-width,initial-scale=1.0"> <!--[if lt IE 9]> <script src="_static/css3-mediaqueries.js"></script> <![endif]--> </head><body> <div class="related" role="navigation" aria-label="related navigation"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="genindex.html" title="General Index" accesskey="I">index</a></li> <li class="right" > <a href="py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="pyFTS.partitioners.html" title="pyFTS.partitioners package" accesskey="P">previous</a> |</li> <li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> »</li> <li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> »</li> <li class="nav-item nav-item-2"><a href="pyFTS.html" accesskey="U">pyFTS package</a> »</li> <li class="nav-item nav-item-this"><a href="">pyFTS.probabilistic package</a></li> </ul> </div> <div class="document"> <div class="documentwrapper"> <div class="bodywrapper"> <div class="body" role="main"> <div class="section" id="pyfts-probabilistic-package"> <h1>pyFTS.probabilistic package<a class="headerlink" href="#pyfts-probabilistic-package" title="Permalink to this headline">¶</a></h1> <div class="section" id="module-pyFTS.probabilistic"> <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.probabilistic" title="Permalink to this headline">¶</a></h2> <p>Probability Distribution objects</p> </div> <div class="section" id="submodules"> <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline">¶</a></h2> </div> <div class="section" id="module-pyFTS.probabilistic.ProbabilityDistribution"> <span id="pyfts-probabilistic-probabilitydistribution-module"></span><h2>pyFTS.probabilistic.ProbabilityDistribution module<a class="headerlink" href="#module-pyFTS.probabilistic.ProbabilityDistribution" title="Permalink to this headline">¶</a></h2> <dl class="py class"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution"> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="sig-name descname">ProbabilityDistribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">type</span><span class="o">=</span><span class="default_value">'KDE'</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition">¶</a></dt> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <p>Represents a discrete or continous probability distribution If type is histogram, the PDF is discrete If type is KDE the PDF is continuous</p> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append"> <code class="sig-name descname">append</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">values</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append" title="Permalink to this definition">¶</a></dt> <dd><p>Increment the frequency count for the values</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>values</strong> – A list of values to account the frequency</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval"> <code class="sig-name descname">append_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">intervals</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval" title="Permalink to this definition">¶</a></dt> <dd><p>Increment the frequency count for all values inside an interval</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>intervals</strong> – A list of intervals do increment the frequency</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood"> <code class="sig-name descname">averageloglikelihood</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.averageloglikelihood"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood" title="Permalink to this definition">¶</a></dt> <dd><p>Average log likelihood of the probability distribution with respect to data</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>data</strong> – </p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p></p> </dd> </dl> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.bins"> <code class="sig-name descname">bins</code><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.bins" title="Permalink to this definition">¶</a></dt> <dd><p>Number of bins on a discrete PDF</p> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl"> <code class="sig-name descname">build_cdf_qtl</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.build_cdf_qtl"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy"> <code class="sig-name descname">crossentropy</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">q</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.crossentropy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy" title="Permalink to this definition">¶</a></dt> <dd><p>Cross entropy between the actual probability distribution and the informed one, H(P,Q) = - ∑ P(x) log ( Q(x) )</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>q</strong> – a probabilistic.ProbabilityDistribution object</p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>Cross entropy between this probability distribution and the given distribution</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative"> <code class="sig-name descname">cumulative</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">values</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.cumulative"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative" title="Permalink to this definition">¶</a></dt> <dd><p>Return the cumulative probability densities for the input values, such that F(x) = P(X <= x)</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>values</strong> – A list of input values</p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>The cumulative probability densities for the input values</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density"> <code class="sig-name descname">density</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">values</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.density"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density" title="Permalink to this definition">¶</a></dt> <dd><p>Return the probability densities for the input values</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>values</strong> – List of values to return the densities</p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>List of probability densities for the input values</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset"> <code class="sig-name descname">differential_offset</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.differential_offset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset" title="Permalink to this definition">¶</a></dt> <dd><p>Auxiliary function for probability distributions of differentiated data</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>value</strong> – </p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p></p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood"> <code class="sig-name descname">empiricalloglikelihood</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.empiricalloglikelihood"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood" title="Permalink to this definition">¶</a></dt> <dd><p>Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )</p> <dl class="field-list simple"> <dt class="field-odd">Returns</dt> <dd class="field-odd"><p></p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy"> <code class="sig-name descname">entropy</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.entropy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy" title="Permalink to this definition">¶</a></dt> <dd><p>Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )</p> <p>:return:the entropy of the probability distribution</p> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value"> <code class="sig-name descname">expected_value</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.expected_value"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value" title="Permalink to this definition">¶</a></dt> <dd><p>Return the expected value of the distribution, as E[X] = ∑ x * P(x)</p> <dl class="field-list simple"> <dt class="field-odd">Returns</dt> <dd class="field-odd"><p>The expected value of the distribution</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence"> <code class="sig-name descname">kullbackleiblerdivergence</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">q</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.kullbackleiblerdivergence"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence" title="Permalink to this definition">¶</a></dt> <dd><p>Kullback-Leibler divergence between the actual probability distribution and the informed one. DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>q</strong> – a probabilistic.ProbabilityDistribution object</p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>Kullback-Leibler divergence</p> </dd> </dl> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.labels"> <code class="sig-name descname">labels</code><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.labels" title="Permalink to this definition">¶</a></dt> <dd><p>Bins labels on a discrete PDF</p> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot"> <code class="sig-name descname">plot</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">axis</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">color</span><span class="o">=</span><span class="default_value">'black'</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[10, 6]</span></em>, <em class="sig-param"><span class="n">title</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.plot"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood"> <code class="sig-name descname">pseudologlikelihood</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.pseudologlikelihood"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood" title="Permalink to this definition">¶</a></dt> <dd><p>Pseudo log likelihood of the probability distribution with respect to data</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>data</strong> – </p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p></p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile"> <code class="sig-name descname">quantile</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">values</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.quantile"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile" title="Permalink to this definition">¶</a></dt> <dd><p>Return the Universe of Discourse values in relation to the quantile input values, such that Q(tau) = min( {x | F(x) >= tau })</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>values</strong> – input values</p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>The list of the quantile values for the input values</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set"> <code class="sig-name descname">set</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em>, <em class="sig-param"><span class="n">density</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set" title="Permalink to this definition">¶</a></dt> <dd><p>Assert a probability ‘density’ for a certain value ‘value’, such that P(value) = density</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>value</strong> – A value in the universe of discourse from the distribution</p></li> <li><p><strong>density</strong> – The probability density to assign to the value</p></li> </ul> </dd> </dl> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.type"> <code class="sig-name descname">type</code><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.type" title="Permalink to this definition">¶</a></dt> <dd><p>If type is histogram, the PDF is discrete If type is KDE the PDF is continuous</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.uod"> <code class="sig-name descname">uod</code><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.uod" title="Permalink to this definition">¶</a></dt> <dd><p>Universe of discourse</p> </dd></dl> </dd></dl> <dl class="py function"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.from_point"> <code class="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="sig-name descname">from_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">x</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#from_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.from_point" title="Permalink to this definition">¶</a></dt> <dd><p>Create a probability distribution from a scalar value</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>x</strong> – scalar value</p></li> <li><p><strong>kwargs</strong> – common parameters of the distribution</p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>the ProbabilityDistribution object</p> </dd> </dl> </dd></dl> </div> <div class="section" id="module-pyFTS.probabilistic.kde"> <span id="pyfts-probabilistic-kde-module"></span><h2>pyFTS.probabilistic.kde module<a class="headerlink" href="#module-pyFTS.probabilistic.kde" title="Permalink to this headline">¶</a></h2> <p>Kernel Density Estimation</p> <dl class="py class"> <dt id="pyFTS.probabilistic.kde.KernelSmoothing"> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.kde.</code><code class="sig-name descname">KernelSmoothing</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition">¶</a></dt> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <p>Kernel Density Estimation</p> <dl class="py attribute"> <dt id="pyFTS.probabilistic.kde.KernelSmoothing.h"> <code class="sig-name descname">h</code><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.h" title="Permalink to this definition">¶</a></dt> <dd><p>Width parameter</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.probabilistic.kde.KernelSmoothing.kernel"> <code class="sig-name descname">kernel</code><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel" title="Permalink to this definition">¶</a></dt> <dd><p>Kernel function</p> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.kde.KernelSmoothing.kernel_function"> <code class="sig-name descname">kernel_function</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">u</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing.kernel_function"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel_function" title="Permalink to this definition">¶</a></dt> <dd><p>Apply the kernel</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>u</strong> – </p> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p></p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.probabilistic.kde.KernelSmoothing.probability"> <code class="sig-name descname">probability</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">x</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing.probability"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.probability" title="Permalink to this definition">¶</a></dt> <dd><p>Probability of the point x on data</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>x</strong> – </p></li> <li><p><strong>data</strong> – </p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p></p> </dd> </dl> </dd></dl> </dd></dl> </div> </div> <div class="clearer"></div> </div> </div> </div> <div class="sphinxsidebar" role="navigation" aria-label="main navigation"> <div class="sphinxsidebarwrapper"> <h3><a href="index.html">Table of Contents</a></h3> <ul> <li><a class="reference internal" href="#">pyFTS.probabilistic package</a><ul> <li><a class="reference internal" href="#module-pyFTS.probabilistic">Module contents</a></li> <li><a class="reference internal" href="#submodules">Submodules</a></li> <li><a class="reference internal" href="#module-pyFTS.probabilistic.ProbabilityDistribution">pyFTS.probabilistic.ProbabilityDistribution module</a></li> <li><a class="reference internal" href="#module-pyFTS.probabilistic.kde">pyFTS.probabilistic.kde module</a></li> </ul> </li> </ul> <h4>Previous topic</h4> <p class="topless"><a href="pyFTS.partitioners.html" title="previous chapter">pyFTS.partitioners package</a></p> <div role="note" aria-label="source link"> <h3>This Page</h3> <ul class="this-page-menu"> <li><a href="_sources/pyFTS.probabilistic.rst.txt" rel="nofollow">Show Source</a></li> </ul> </div> <div id="searchbox" style="display: none" role="search"> <h3 id="searchlabel">Quick search</h3> <div class="searchformwrapper"> <form class="search" action="search.html" method="get"> <input type="text" name="q" aria-labelledby="searchlabel" /> <input type="submit" value="Go" /> </form> </div> </div> <script>$('#searchbox').show(0);</script> </div> </div> <div class="clearer"></div> </div> <div class="related" role="navigation" aria-label="related navigation"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="genindex.html" title="General Index" >index</a></li> <li class="right" > <a href="py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="pyFTS.partitioners.html" title="pyFTS.partitioners package" >previous</a> |</li> <li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> »</li> <li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> »</li> <li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> »</li> <li class="nav-item nav-item-this"><a href="">pyFTS.probabilistic package</a></li> </ul> </div> <div class="footer" role="contentinfo"> © Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil. Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 3.1.2. </div> </body> </html>