pyFTS.probabilistic package¶
Module contents¶
Probability Distribution objects
Submodules¶
pyFTS.probabilistic.ProbabilityDistribution module¶
-
class
pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution(type='KDE', **kwargs)¶ Bases:
objectRepresents a discrete or continous probability distribution If type is histogram, the PDF is discrete If type is KDE the PDF is continuous
-
append(values)¶ Increment the frequency count for the values
Parameters: values – A list of values to account the frequency
-
append_interval(intervals)¶ Increment the frequency count for all values inside an interval
Parameters: intervals – A list of intervals do increment the frequency
-
averageloglikelihood(data)¶ Average log likelihood of the probability distribution with respect to data
Parameters: data – Returns:
-
build_cdf_qtl()¶
-
crossentropy(q)¶ Cross entropy between the actual probability distribution and the informed one, H(P,Q) = - ∑ P(x) log ( Q(x) )
Parameters: q – a probabilistic.ProbabilityDistribution object Returns: Cross entropy between this probability distribution and the given distribution
-
cumulative(values)¶ Return the cumulative probability densities for the input values, such that F(x) = P(X <= x)
Parameters: values – A list of input values Returns: The cumulative probability densities for the input values
-
density(values)¶ Return the probability densities for the input values
Parameters: values – List of values to return the densities Returns: List of probability densities for the input values
-
differential_offset(value)¶ Auxiliary function for probability distributions of differentiated data
Parameters: value – Returns:
-
empiricalloglikelihood()¶ Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )
Returns:
-
entropy()¶ Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )
:return:the entropy of the probability distribution
-
expected_value()¶ Return the expected value of the distribution, as E[X] = ∑ x * P(x)
Returns: The expected value of the distribution
-
kullbackleiblerdivergence(q)¶ Kullback-Leibler divergence between the actual probability distribution and the informed one. DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )
Parameters: q – a probabilistic.ProbabilityDistribution object Returns: Kullback-Leibler divergence
-
plot(axis=None, color='black', tam=[10, 6], title=None)¶
-
pseudologlikelihood(data)¶ Pseudo log likelihood of the probability distribution with respect to data
Parameters: data – Returns:
-
quantile(values)¶ Return the Universe of Discourse values in relation to the quantile input values, such that Q(tau) = min( {x | F(x) >= tau })
Parameters: values – input values Returns: The list of the quantile values for the input values
-
set(value, density)¶ Assert a probability ‘density’ for a certain value ‘value’, such that P(value) = density
Parameters: - value – A value in the universe of discourse from the distribution
- density – The probability density to assign to the value
-
pyFTS.probabilistic.kde module¶
Kernel Density Estimation