Source code for pyFTS.models.chen

"""
First Order Conventional Fuzzy Time Series by Chen (1996)

S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.
"""

import numpy as np
from pyFTS.common import FuzzySet, FLR, fts, flrg


[docs]class ConventionalFLRG(flrg.FLRG): """First Order Conventional Fuzzy Logical Relationship Group""" def __init__(self, LHS, **kwargs): super(ConventionalFLRG, self).__init__(1, **kwargs) self.LHS = LHS self.RHS = set()
[docs] def get_key(self, sets): return sets[self.LHS].name
[docs] def append_rhs(self, c, **kwargs): self.RHS.add(c)
def __str__(self): tmp = str(self.LHS) + " -> " tmp2 = "" for c in sorted(self.RHS, key=lambda s: s): if len(tmp2) > 0: tmp2 = tmp2 + "," tmp2 = tmp2 + str(c) return tmp + tmp2
[docs]class ConventionalFTS(fts.FTS): """Conventional Fuzzy Time Series""" def __init__(self, **kwargs): super(ConventionalFTS, self).__init__(order=1, **kwargs) self.name = "Conventional FTS" self.detail = "Chen" self.shortname = "CFTS" self.flrgs = {}
[docs] def generate_flrg(self, flrs): for flr in flrs: if flr.LHS in self.flrgs: self.flrgs[flr.LHS].append_rhs(flr.RHS) else: self.flrgs[flr.LHS] = ConventionalFLRG(flr.LHS) self.flrgs[flr.LHS].append_rhs(flr.RHS)
[docs] def train(self, data, **kwargs): tmpdata = self.partitioner.fuzzyfy(data, method='maximum', mode='sets') flrs = FLR.generate_non_recurrent_flrs(tmpdata) self.generate_flrg(flrs)
[docs] def forecast(self, ndata, **kwargs): explain = kwargs.get('explain',False) l = len(ndata) if not explain else 1 ret = [] for k in np.arange(0, l): actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets) if explain: print("Fuzzyfication:\n\n {} -> {} \n".format(ndata[k], actual.name)) if actual.name not in self.flrgs: ret.append(actual.centroid) if explain: print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid)) else: _flrg = self.flrgs[actual.name] mp = _flrg.get_midpoint(self.sets) ret.append(mp) if explain: print("Rules:\n\n {} \t Midpoint: {} \n".format(str(_flrg), mp)) print("Deffuzyfied value: {} \n".format(mp)) return ret