Source code for pyFTS.models.yu
"""
First Order Weighted Fuzzy Time Series by Yu(2005)
H.-K. Yu, “Weighted fuzzy time series models for TAIEX forecasting,”
Phys. A Stat. Mech. its Appl., vol. 349, no. 3, pp. 609–624, 2005.
"""
import numpy as np
from pyFTS.common import FuzzySet, FLR, fts, flrg
from pyFTS.models import chen
[docs]class WeightedFLRG(flrg.FLRG):
"""First Order Weighted Fuzzy Logical Relationship Group"""
def __init__(self, LHS, **kwargs):
super(WeightedFLRG, self).__init__(1, **kwargs)
self.LHS = LHS
self.RHS = []
self.count = 1.0
self.w = None
[docs] def append_rhs(self, c, **kwargs):
count = kwargs.get('count', 1.0)
self.RHS.append(c)
self.count += count
[docs] def weights(self, sets):
if self.w is None:
tot = sum(np.arange(1.0, self.count, 1.0))
self.w = np.array([k / tot for k in np.arange(1.0, self.count, 1.0)])
return self.w
def __str__(self):
tmp = self.LHS + " -> "
tmp2 = ""
cc = 1.0
tot = sum(np.arange(1.0, self.count, 1.0))
for c in sorted(self.RHS):
if len(tmp2) > 0:
tmp2 = tmp2 + ","
tmp2 = tmp2 + c + "(" + str(round(cc / tot, 3)) + ")"
cc = cc + 1.0
return tmp + tmp2
[docs]class WeightedFTS(fts.FTS):
"""First Order Weighted Fuzzy Time Series"""
def __init__(self, **kwargs):
super(WeightedFTS, self).__init__(order=1, name="WFTS", **kwargs)
self.name = "Weighted FTS"
self.detail = "Yu"
[docs] def generate_FLRG(self, flrs):
for flr in flrs:
if flr.LHS in self.flrgs:
self.flrgs[flr.LHS].append_rhs(flr.RHS)
else:
self.flrgs[flr.LHS] = WeightedFLRG(flr.LHS);
self.flrgs[flr.LHS].append_rhs(flr.RHS)
[docs] def train(self, ndata, **kwargs):
tmpdata = self.partitioner.fuzzyfy(ndata, method='maximum', mode='sets')
flrs = FLR.generate_recurrent_flrs(tmpdata)
self.generate_FLRG(flrs)
[docs] def forecast(self, ndata, **kwargs):
explain = kwargs.get('explain', False)
if self.partitioner is not None:
ordered_sets = self.partitioner.ordered_sets
else:
ordered_sets = FuzzySet.set_ordered(self.sets)
ndata = np.array(ndata)
l = len(ndata) if not explain else 1
ret = []
for k in np.arange(0, l):
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
if explain:
print("Fuzzyfication:\n\n {} -> {} \n\n".format(ndata[k], actual.name))
if actual.name not in self.flrgs:
ret.append(actual.centroid)
if explain:
print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid))
else:
flrg = self.flrgs[actual.name]
mp = flrg.get_midpoints(self.sets)
final = mp.dot(flrg.weights(self.sets))
ret.append(final)
if explain:
print("Rules:\n\n {} \n\n ".format(str(flrg)))
print("Midpoints: \n\n {}\n\n".format(mp))
print("Deffuzyfied value: {} \n".format(final))
return ret