pyFTS.models.multivariate package¶
Module contents¶
Multivariate Fuzzy Time Series methods
Submodules¶
pyFTS.models.multivariate.FLR module¶
pyFTS.models.multivariate.common module¶
-
class
pyFTS.models.multivariate.common.MultivariateFuzzySet(**kwargs)[source]¶ Bases:
pyFTS.common.Composite.FuzzySetMultivariate Composite Fuzzy Set
-
append_set(variable, set)[source]¶ Appends a new fuzzy set from a new variable
- Parameters
variable – an multivariate.variable instance
set – an common.FuzzySet instance
-
pyFTS.models.multivariate.variable module¶
-
class
pyFTS.models.multivariate.variable.Variable(name, **kwargs)[source]¶ Bases:
objectA variable of a fuzzy time series multivariate model. Each variable contains its own transformations and partitioners.
-
alias¶ A string with the alias of the variable
-
alpha_cut¶ Minimal membership value to be considered on fuzzyfication process
-
data_label¶ A string with the column name on DataFrame
-
data_type¶ The type of the data column on Pandas Dataframe
-
mask¶ The mask for format the data column on Pandas Dataframe
-
name¶ A string with the name of the variable
-
partitioner¶ UoD partitioner for the variable data
-
transformation¶ Pre processing transformation for the variable
-
pyFTS.models.multivariate.flrg module¶
-
class
pyFTS.models.multivariate.flrg.FLRG(**kwargs)[source]¶ Bases:
pyFTS.common.flrg.FLRGMultivariate Fuzzy Logical Rule Group
-
get_lower(sets)[source]¶ Returns the lower bound value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
lower bound value
-
get_membership(data, variables)[source]¶ Returns the membership value of the FLRG for the input data
- Parameters
data – input data
sets – fuzzy sets
- Returns
the membership value
-
pyFTS.models.multivariate.partitioner module¶
-
class
pyFTS.models.multivariate.partitioner.MultivariatePartitioner(**kwargs)[source]¶ Bases:
pyFTS.partitioners.partitioner.PartitionerBase class for partitioners which use the MultivariateFuzzySet
-
build(data)[source]¶ Perform the partitioning of the Universe of Discourse
- Parameters
data – training data
- Returns
-
fuzzyfy(data, **kwargs)[source]¶ Fuzzyfy the input data according to this partitioner fuzzy sets.
- Parameters
data – input value to be fuzzyfied
alpha_cut – the minimal membership value to be considered on fuzzyfication (only for mode=’sets’)
method – the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)
mode – the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership
values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )
:returns a list with the fuzzyfied values, depending on the mode
-
search(data, **kwargs)[source]¶ Perform a search for the nearest fuzzy sets of the point ‘data’. This function were designed to work with several overlapped fuzzy sets.
- Parameters
data – the value to search for the nearest fuzzy sets
type – the return type: ‘index’ for the fuzzy set indexes or ‘name’ for fuzzy set names.
- Returns
a list with the nearest fuzzy sets
-
pyFTS.models.multivariate.grid module¶
-
class
pyFTS.models.multivariate.grid.GridCluster(**kwargs)[source]¶ Bases:
pyFTS.models.multivariate.partitioner.MultivariatePartitionerA cartesian product of all fuzzy sets of all variables
-
class
pyFTS.models.multivariate.grid.IncrementalGridCluster(**kwargs)[source]¶ Bases:
pyFTS.models.multivariate.partitioner.MultivariatePartitionerCreate combinations of fuzzy sets of the variables on demand, incrementally increasing the multivariate fuzzy set base.
-
fuzzyfy(data, **kwargs)[source]¶ Fuzzyfy the input data according to this partitioner fuzzy sets.
- Parameters
data – input value to be fuzzyfied
alpha_cut – the minimal membership value to be considered on fuzzyfication (only for mode=’sets’)
method – the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)
mode – the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership
values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )
:returns a list with the fuzzyfied values, depending on the mode
-
pyFTS.models.multivariate.mvfts module¶
-
class
pyFTS.models.multivariate.mvfts.MVFTS(**kwargs)[source]¶ Bases:
pyFTS.common.fts.FTSMultivariate extension of Chen’s ConventionalFTS method
-
append_variable(var)[source]¶ Append a new endogenous variable to the model
- Parameters
var – variable object
- Returns
-
apply_transformations(data, params=None, updateUoD=False, **kwargs)[source]¶ Apply the data transformations for data preprocessing
- Parameters
data – input data
params – transformation parameters
updateUoD –
kwargs –
- Returns
preprocessed data
-
clone_parameters(model)[source]¶ Import the parameters values from other model
- Parameters
model – a model to clone the parameters
-
forecast(data, **kwargs)[source]¶ Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
-
forecast_ahead(data, steps, **kwargs)[source]¶ Point forecast n steps ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast (default: 1)
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted values
-
forecast_ahead_interval(data, steps, **kwargs)[source]¶ Interval forecast n steps ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted intervals
-
pyFTS.models.multivariate.wmvfts module¶
-
class
pyFTS.models.multivariate.wmvfts.WeightedFLRG(**kwargs)[source]¶ Bases:
pyFTS.models.multivariate.flrg.FLRGWeighted Multivariate Fuzzy Logical Rule Group
-
get_lower(sets)[source]¶ Returns the lower bound value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
lower bound value
-
get_midpoint(sets)[source]¶ Returns the midpoint value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
the midpoint value
-
-
class
pyFTS.models.multivariate.wmvfts.WeightedMVFTS(**kwargs)[source]¶ Bases:
pyFTS.models.multivariate.mvfts.MVFTSWeighted Multivariate FTS
pyFTS.models.multivariate.cmvfts module¶
-
class
pyFTS.models.multivariate.cmvfts.ClusteredMVFTS(**kwargs)[source]¶ Bases:
pyFTS.models.multivariate.mvfts.MVFTSMeta model for high order, clustered multivariate FTS
-
forecast(data, **kwargs)[source]¶ Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
-
forecast_ahead_distribution(data, steps, **kwargs)[source]¶ Probabilistic forecast n steps ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted Probability Distributions
-
forecast_ahead_multivariate(data, steps, **kwargs)[source]¶ Multivariate forecast n step ahead
- Parameters
data – Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a Pandas Dataframe object representing the forecasted values for each variable
-
forecast_distribution(data, **kwargs)[source]¶ Probabilistic forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
forecast_interval(data, **kwargs)[source]¶ Interval forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the prediction intervals
-
forecast_multivariate(data, **kwargs)[source]¶ Multivariate forecast one step ahead
- Parameters
data – Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a Pandas Dataframe object representing the forecasted values for each variable
-
fts_method¶ The FTS method to be called when a new model is build
-
fts_params¶ The FTS method specific parameters
-
model¶ The most recent trained model
-
pyFTS.models.multivariate.granular module¶
-
class
pyFTS.models.multivariate.granular.GranularWMVFTS(**kwargs)[source]¶ Bases:
pyFTS.models.multivariate.cmvfts.ClusteredMVFTSGranular multivariate weighted high order FTS
-
model¶ The most recent trained model
-