Source code for pyFTS.partitioners.Util

"""
Facility methods for pyFTS partitioners module
"""

import numpy as np
import pandas as pd
import matplotlib as plt
import matplotlib.colors as pltcolors
import matplotlib.pyplot as plt
#from mpl_toolkits.mplot3d import Axes3D

from pyFTS.benchmarks import Measures
from pyFTS.common import Membership, Util
from pyFTS.partitioners import Grid,Huarng,FCM,Entropy

all_methods = [Grid.GridPartitioner, Entropy.EntropyPartitioner, FCM.FCMPartitioner, Huarng.HuarngPartitioner]

mfs = [Membership.trimf, Membership.gaussmf, Membership.trapmf]


[docs]def plot_sets(data, sets, titles, size=[12, 10], save=False, file=None, axis=None): num = len(sets) if axis is None: fig, axes = plt.subplots(nrows=num, ncols=1,figsize=size) for k in np.arange(0,num): ticks = [] x = [] ax = axes[k] if axis is None else axis ax.set_title(titles[k]) ax.set_ylim([0, 1.1]) for key in sets[k].keys(): s = sets[k][key] if s.mf == Membership.trimf: ax.plot(s.parameters,[0,1,0]) elif s.mf == Membership.gaussmf: tmpx = [ kk for kk in np.arange(s.lower, s.upper)] tmpy = [s.membership(kk) for kk in np.arange(s.lower, s.upper)] ax.plot(tmpx, tmpy) elif s.mf == Membership.trapmf: ax.plot(s.parameters, [0, 1, 1, 0]) ticks.append(str(round(s.centroid, 0)) + '\n' + s.name) x.append(s.centroid) ax.xaxis.set_ticklabels(ticks) ax.xaxis.set_ticks(x) if axis is None: plt.tight_layout() Util.show_and_save_image(fig, file, save)
[docs]def plot_partitioners(data, objs, tam=[12, 10], save=False, file=None, axis=None): sets = [k.sets for k in objs] titles = [k.name for k in objs] plot_sets(data, sets, titles, tam, save, file, axis)
[docs]def explore_partitioners(data, npart, methods=None, mf=None, transformation=None, size=[12, 10], save=False, file=None): """ Create partitioners for the mf membership functions and npart partitions and show the partitioning images. :data: Time series data :npart: Maximum number of partitions of the universe of discourse :methods: A list with the partitioning methods to be used :mf: A list with the membership functions to be used :transformation: a transformation to be used in partitioner :size: list, the size of the output image [width, height] :save: boolean, if the image will be saved on disk :file: string, the file path to save the image :return: the list of the built partitioners """ if methods is None: methods = all_methods if mf is None: mf = mfs objs = [] for p in methods: for m in mf: obj = p(data=data, npart=npart, func=m, transformation=transformation) obj.name = obj.name + " - " + obj.membership_function.__name__ objs.append(obj) plot_partitioners(data, objs, size, save, file) return objs