Source code for pyFTS.models.yu

"""
First Order Weighted Fuzzy Time Series by Yu(2005)

H.-K. Yu, “Weighted fuzzy time series models for TAIEX forecasting,” 
Phys. A Stat. Mech. its Appl., vol. 349, no. 3, pp. 609–624, 2005.
"""

import numpy as np
from pyFTS.common import FuzzySet, FLR, fts, flrg
from pyFTS.models import chen


[docs]class WeightedFLRG(flrg.FLRG): """First Order Weighted Fuzzy Logical Relationship Group""" def __init__(self, LHS, **kwargs): super(WeightedFLRG, self).__init__(1, **kwargs) self.LHS = LHS self.RHS = [] self.count = 1.0 self.w = None
[docs] def append_rhs(self, c, **kwargs): self.RHS.append(c) self.count = self.count + 1.0
[docs] def weights(self, sets): if self.w is None: tot = sum(np.arange(1.0, self.count, 1.0)) self.w = np.array([k / tot for k in np.arange(1.0, self.count, 1.0)]) return self.w
def __str__(self): tmp = self.LHS + " -> " tmp2 = "" cc = 1.0 tot = sum(np.arange(1.0, self.count, 1.0)) for c in sorted(self.RHS): if len(tmp2) > 0: tmp2 = tmp2 + "," tmp2 = tmp2 + c + "(" + str(round(cc / tot, 3)) + ")" cc = cc + 1.0 return tmp + tmp2
[docs]class WeightedFTS(fts.FTS): """First Order Weighted Fuzzy Time Series""" def __init__(self, **kwargs): super(WeightedFTS, self).__init__(order=1, name="WFTS", **kwargs) self.name = "Weighted FTS" self.detail = "Yu"
[docs] def generate_FLRG(self, flrs): for flr in flrs: if flr.LHS in self.flrgs: self.flrgs[flr.LHS].append_rhs(flr.RHS) else: self.flrgs[flr.LHS] = WeightedFLRG(flr.LHS); self.flrgs[flr.LHS].append_rhs(flr.RHS)
[docs] def train(self, ndata, **kwargs): tmpdata = FuzzySet.fuzzyfy(ndata, partitioner=self.partitioner, method='maximum', mode='sets') flrs = FLR.generate_recurrent_flrs(tmpdata) self.generate_FLRG(flrs)
[docs] def forecast(self, ndata, **kwargs): explain = kwargs.get('explain', False) if self.partitioner is not None: ordered_sets = self.partitioner.ordered_sets else: ordered_sets = FuzzySet.set_ordered(self.sets) ndata = np.array(ndata) l = len(ndata) if not explain else 1 ret = [] for k in np.arange(0, l): actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets) if explain: print("Fuzzyfication:\n\n {} -> {} \n\n".format(ndata[k], actual.name)) if actual.name not in self.flrgs: ret.append(actual.centroid) if explain: print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid)) else: flrg = self.flrgs[actual.name] mp = flrg.get_midpoints(self.sets) final = mp.dot(flrg.weights(self.sets)) ret.append(final) if explain: print("Rules:\n\n {} \n\n ".format(str(flrg))) print("Midpoints: \n\n {}\n\n".format(mp)) print("Deffuzyfied value: {} \n".format(final)) return ret