from pyFTS import * class HighOrderFTS(fts.FTS): def __init__(self,order,name): super(HighOrderFTS, self).__init__(order,name) def defuzzy(self,data,t): cn = np.array([0.0 for k in range(len(self.sets))]) ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order-1)]) rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order-1)]) ft = np.array([0.0 for k in range(len(self.sets))]) for s in range(len(self.sets)): cn[s] = self.sets[s].membership(data[t]) for w in range(self.order-1): ow[w,s] = self.sets[s].membership(data[t-w]) rn[w,s] = ow[w,s] * cn[s] ft[s] = max(ft[s],rn[w,s]) mft = max(ft) out = 0.0 count = 0.0 for s in range(len(self.sets)): if ft[s] == mft: out = out + self.sets[s].centroid count = count + 1.0 return out / count def learn(self, data, sets): self.sets = sets def predict(self,data,t): return self.defuzzy(data,t) def predictDiff(self,data,t): return data[t] + self.defuzzy(diferencas(data),t)