Source code for pyFTS.hyperparam.GridSearch


from pyFTS.common import Util, Membership
from pyFTS.models import hofts
from pyFTS.partitioners import Grid, Entropy
from pyFTS.benchmarks import Measures
from pyFTS.hyperparam import Util as hUtil

import numpy as np
from itertools import product


[docs]def dict_individual(mf, partitioner, partitions, order, lags, alpha_cut): return { 'mf': mf, 'partitioner': partitioner, 'npart': partitions, 'alpha': alpha_cut, 'order': order, 'lags': lags }
[docs]def cluster_method(individual, dataset, **kwargs): from pyFTS.common import Util, Membership from pyFTS.models import hofts from pyFTS.partitioners import Grid, Entropy from pyFTS.benchmarks import Measures import numpy as np if individual['mf'] == 1: mf = Membership.trimf elif individual['mf'] == 2: mf = Membership.trapmf elif individual['mf'] == 3 and individual['partitioner'] != 2: mf = Membership.gaussmf else: mf = Membership.trimf window_size = kwargs.get('window_size', 800) train_rate = kwargs.get('train_rate', .8) increment_rate = kwargs.get('increment_rate', .2) parameters = kwargs.get('parameters', {}) errors = [] sizes = [] for count, train, test in Util.sliding_window(dataset, window_size, train=train_rate, inc=increment_rate): if individual['partitioner'] == 1: partitioner = Grid.GridPartitioner(data=train, npart=individual['npart'], func=mf) elif individual['partitioner'] == 2: npart = individual['npart'] if individual['npart'] > 10 else 10 partitioner = Entropy.EntropyPartitioner(data=train, npart=npart, func=mf) model = hofts.WeightedHighOrderFTS(partitioner=partitioner, lags=individual['lags'], alpha_cut=individual['alpha'], order=individual['order']) model.fit(train) forecasts = model.predict(test) #rmse, mape, u = Measures.get_point_statistics(test, model) rmse = Measures.rmse(test[model.max_lag:], forecasts) size = len(model) errors.append(rmse) sizes.append(size) return {'parameters': individual, 'rmse': np.nanmean(errors), 'size': np.nanmean(size)}
[docs]def process_jobs(jobs, datasetname, conn): from pyFTS.distributed import dispy as dUtil import dispy for ct, job in enumerate(jobs): print("Processing job {}".format(ct)) result = job() if job.status == dispy.DispyJob.Finished and result is not None: print("Processing result of {}".format(result)) metrics = {'rmse': result['rmse'], 'size': result['size']} for metric in metrics.keys(): param = result['parameters'] record = (datasetname, 'GridSearch', 'WHOFTS', None, param['mf'], param['order'], param['partitioner'], param['npart'], param['alpha'], str(param['lags']), metric, metrics[metric]) hUtil.insert_hyperparam(record, conn) else: print(job.exception) print(job.stdout)
[docs]def execute(hyperparams, datasetname, dataset, **kwargs): from pyFTS.distributed import dispy as dUtil import dispy nodes = kwargs.get('nodes',['127.0.0.1']) individuals = [] if 'lags' in hyperparams: lags = hyperparams.pop('lags') else: lags = [k for k in np.arange(50)] keys_sorted = [k for k in sorted(hyperparams.keys())] index = {} for k in np.arange(len(keys_sorted)): index[keys_sorted[k]] = k print("Evaluation order: \n {}".format(index)) hp_values = [ [v for v in hyperparams[hp]] for hp in keys_sorted ] print("Evaluation values: \n {}".format(hp_values)) cluster, http_server = dUtil.start_dispy_cluster(cluster_method, nodes=nodes) file = kwargs.get('file', 'hyperparam.db') conn = hUtil.open_hyperparam_db(file) for instance in product(*hp_values): partitions = instance[index['partitions']] partitioner = instance[index['partitioner']] mf = instance[index['mf']] alpha_cut = instance[index['alpha']] order = instance[index['order']] count = 0 for lag1 in lags: # o é o lag1 _lags = [lag1] count += 1 if order > 1: for lag2 in lags: # o é o lag1 _lags2 = [lag1, lag1+lag2] count += 1 if order > 2: for lag3 in lags: # o é o lag1 count += 1 _lags3 = [lag1, lag1 + lag2, lag1 + lag2+lag3 ] individuals.append(dict_individual(mf, partitioner, partitions, order, _lags3, alpha_cut)) else: individuals.append( dict_individual(mf, partitioner, partitions, order, _lags2, alpha_cut)) else: individuals.append(dict_individual(mf, partitioner, partitions, order, _lags, alpha_cut)) if count > 10: jobs = [] for ind in individuals: print("Testing individual {}".format(ind)) job = cluster.submit(ind, dataset, **kwargs) jobs.append(job) process_jobs(jobs, datasetname, conn) count = 0 individuals = [] dUtil.stop_dispy_cluster(cluster, http_server)