Source code for pyFTS.models.hofts

"""
High Order FTS

Severiano, S. A. Jr; Silva, P. C. L.; Sadaei, H. J.; Guimarães, F. G. Very Short-term Solar Forecasting
using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DOI10.1109/FUZZ-IEEE.2017.8015732
"""

import numpy as np
from pyFTS.common import FuzzySet, FLR, fts, flrg
from itertools import product


[docs]class HighOrderFLRG(flrg.FLRG): """Conventional High Order Fuzzy Logical Relationship Group""" def __init__(self, order, **kwargs): super(HighOrderFLRG, self).__init__(order, **kwargs) self.LHS = [] self.RHS = {} self.strlhs = ""
[docs] def append_rhs(self, c, **kwargs): if c not in self.RHS: self.RHS[c] = c
[docs] def append_lhs(self, c): self.LHS.append(c)
def __str__(self): tmp = "" for c in sorted(self.RHS): if len(tmp) > 0: tmp = tmp + "," tmp = tmp + c return self.get_key() + " -> " + tmp def __len__(self): return len(self.RHS)
[docs]class WeightedHighOrderFLRG(flrg.FLRG): """Weighted High Order Fuzzy Logical Relationship Group""" def __init__(self, order, **kwargs): super(WeightedHighOrderFLRG, self).__init__(order, **kwargs) self.LHS = [] self.RHS = {} self.count = 0.0 self.strlhs = "" self.w = None
[docs] def append_rhs(self, fset, **kwargs): count = kwargs.get('count',1.0) if fset not in self.RHS: self.RHS[fset] = count else: self.RHS[fset] += count self.count += count
[docs] def append_lhs(self, c): self.LHS.append(c)
[docs] def weights(self): if self.w is None: self.w = np.array([self.RHS[c] / self.count for c in self.RHS.keys()]) return self.w
[docs] def get_midpoint(self, sets): if self.midpoint is None: mp = np.array([sets[c].centroid for c in self.RHS.keys()]) self.midpoint = mp.dot(self.weights()) return self.midpoint
[docs] def get_lower(self, sets): if self.lower is None: lw = np.array([sets[s].lower for s in self.RHS.keys()]) self.lower = lw.dot(self.weights()) return self.lower
[docs] def get_upper(self, sets): if self.upper is None: up = np.array([sets[s].upper for s in self.RHS.keys()]) self.upper = up.dot(self.weights()) return self.upper
def __str__(self): _str = "" for k in self.RHS.keys(): _str += ", " if len(_str) > 0 else "" _str += k + " (" + str(round(self.RHS[k] / self.count, 3)) + ")" return self.get_key() + " -> " + _str def __len__(self): return len(self.RHS)
[docs]class HighOrderFTS(fts.FTS): """Conventional High Order Fuzzy Time Series""" def __init__(self, **kwargs): super(HighOrderFTS, self).__init__(**kwargs) self.name = "High Order FTS" self.shortname = "HOFTS" self.detail = "Severiano, Silva, Sadaei and Guimarães" self.is_high_order = True self.min_order = 1 self.order= kwargs.get("order", self.min_order) self.configure_lags(**kwargs)
[docs] def configure_lags(self, **kwargs): if "order" in kwargs: self.order = kwargs.get("order", self.min_order) if "lags" in kwargs: self.lags = kwargs.get("lags", None) if self.lags is not None: self.max_lag = max(self.lags) else: self.max_lag = self.order self.lags = np.arange(1, self.order+1)
[docs] def generate_lhs_flrg(self, sample, explain=False): nsample = [self.partitioner.fuzzyfy(k, mode="sets", alpha_cut=self.alpha_cut) for k in sample] if explain: self.append_log("Fuzzyfication","{} -> {}".format(sample, nsample)) return self.generate_lhs_flrg_fuzzyfied(nsample, explain)
[docs] def generate_lhs_flrg_fuzzyfied(self, sample, explain=False): lags = [] flrgs = [] for ct, o in enumerate(self.lags): lhs = sample[o - 1] lags.append(lhs) if explain: self.append_log("Ordering Lags", "Lag {} Value {}".format(o, lhs)) # Trace the possible paths for path in product(*lags): flrg = HighOrderFLRG(self.order) for lhs in path: flrg.append_lhs(lhs) flrgs.append(flrg) return flrgs
[docs] def generate_flrg(self, data): l = len(data) for k in np.arange(self.max_lag, l): if self.dump: print("FLR: " + str(k)) sample = data[k - self.max_lag: k] rhs = self.partitioner.fuzzyfy(data[k], mode="sets", alpha_cut=self.alpha_cut) flrgs = self.generate_lhs_flrg(sample) for flrg in flrgs: if flrg.get_key() not in self.flrgs: self.flrgs[flrg.get_key()] = flrg; for st in rhs: self.flrgs[flrg.get_key()].append_rhs(st)
[docs] def generate_flrg_fuzzyfied(self, data): l = len(data) for k in np.arange(self.max_lag, l): if self.dump: print("FLR: " + str(k)) sample = data[k - self.max_lag: k] rhs = data[k] flrgs = self.generate_lhs_flrg_fuzzyfied(sample) for flrg in flrgs: if flrg.get_key() not in self.flrgs: self.flrgs[flrg.get_key()] = flrg for st in rhs: self.flrgs[flrg.get_key()].append_rhs(st)
[docs] def train(self, data, **kwargs): self.configure_lags(**kwargs) if not kwargs.get('fuzzyfied',False): self.generate_flrg(data) else: self.generate_flrg_fuzzyfied(data)
[docs] def forecast(self, ndata, **kwargs): explain = kwargs.get('explain', False) fuzzyfied = kwargs.get('fuzzyfied', False) mode = kwargs.get('mode', 'mean') ret = [] l = len(ndata) if not explain else self.max_lag + 1 if l < self.max_lag: return ndata elif l == self.max_lag: l += 1 for k in np.arange(self.max_lag, l): sample = ndata[k - self.max_lag: k] if not fuzzyfied: flrgs = self.generate_lhs_flrg(sample, explain) else: flrgs = self.generate_lhs_flrg_fuzzyfied(sample, explain) midpoints = [] memberships = [] for flrg in flrgs: if flrg.get_key() not in self.flrgs: if len(flrg.LHS) > 0: mp = self.partitioner.sets[flrg.LHS[-1]].centroid mv = self.partitioner.sets[flrg.LHS[-1]].membership(sample[-1]) if not fuzzyfied else None midpoints.append(mp) memberships.append(mv) if explain: self.append_log("Rule Matching", "{} -> {} (Naïve) Midpoint: {}".format(str(flrg.LHS), flrg.LHS[-1], mp)) else: flrg = self.flrgs[flrg.get_key()] mp = flrg.get_midpoint(self.partitioner.sets) mv = flrg.get_membership(sample, self.partitioner.sets) if not fuzzyfied else None midpoints.append(mp) memberships.append(mv) if explain: self.append_log("Rule Matching", "{}, Midpoint: {} Membership: {}".format(flrg.get_key(), mp, mv)) if mode == "mean" or fuzzyfied: final = np.nanmean(midpoints) if explain: self.append_log("Deffuzyfication", "By Mean: {}".format(final)) else: final = np.dot(midpoints, memberships)/np.nansum(memberships) if explain: self.append_log("Deffuzyfication", "By Memberships: {}".format(final)) ret.append(final) return ret
[docs]class WeightedHighOrderFTS(HighOrderFTS): """Weighted High Order Fuzzy Time Series""" def __init__(self, **kwargs): super(WeightedHighOrderFTS, self).__init__(**kwargs) self.name = "Weighted High Order FTS" self.shortname = "WHOFTS"
[docs] def generate_lhs_flrg_fuzzyfied(self, sample, explain=False): lags = [] flrgs = [] for ct, o in enumerate(self.lags): lags.append(sample[o-1]) if explain: print("\t (Lag {}) {} \n".format(o, sample[o-1])) # Trace the possible paths for path in product(*lags): flrg = WeightedHighOrderFLRG(self.order) for lhs in path: flrg.append_lhs(lhs) flrgs.append(flrg) return flrgs