import numpy as np from pyFTS import * def differential(original): n = len(original) diff = [ original[t-1]-original[t] for t in np.arange(1,n) ] diff.insert(0,0) return np.array(diff) def trimf(x,parameters): if(x < parameters[0]): return 0 elif(x >= parameters[0] and x < parameters[1]): return (x-parameters[0])/(parameters[1]-parameters[0]) elif(x >= parameters[1] and x <= parameters[2]): return (parameters[2]-x)/(parameters[2]-parameters[1]) else: return 0 def trapmf(x, parameters): if(x < parameters[0]): return 0 elif(x >= parameters[0] and x < parameters[1]): return (x-parameters[0])/(parameters[1]-parameters[0]) elif(x >= parameters[1] and x <= parameters[2]): return 1 elif(x >= parameters[2] and x <= parameters[3]): return (parameters[3]-x)/(parameters[3]-parameters[2]) else: return 0 def gaussmf(x,parameters): return math.exp(-0.5*((x-parameters[0]) / parameters[1] )**2) def bellmf(x,parameters): return 1 / (1 + abs((xx - parameters[2])/parameters[0])**(2*parameters[1])) def sigmf(x,parameters): return 1 / (1 + math.exp(-parameters[0] * (x - parameters[1]))) class FuzzySet: def __init__(self,name,mf,parameters,centroid): self.name = name self.mf = mf self.parameters = parameters self.centroid = centroid def membership(self,x): return self.mf(x,self.parameters) def __str__(self): return self.name + ": " + str(self.mf) + "(" + str(self.parameters) + ")" def GridPartitionerTrimf(data,npart,names = None,prefix = "A"): sets = [] dmax = max(data) dmin = min(data) dlen = dmax - dmin partlen = dlen / npart partition = dmin for c in range(npart): sets.append( FuzzySet(prefix+str(c),trimf,[partition-partlen, partition, partition+partlen], partition ) ) partition = partition + partlen return sets