# -*- coding: utf8 -*- """ pyFTS module for common benchmark metrics """ import numpy as np import pandas as pd from pyFTS.common import FuzzySet,SortedCollection def acf(data, k): """ Autocorrelation function estimative :param data: :param k: :return: """ mu = np.mean(data) sigma = np.var(data) n = len(data) s = 0 for t in np.arange(0,n-k): s += (data[t]-mu) * (data[t+k] - mu) return 1/((n-k)*sigma)*s def rmse(targets, forecasts): """ Root Mean Squared Error :param targets: :param forecasts: :return: """ return np.sqrt(np.nanmean((targets - forecasts) ** 2)) def rmse_interval(targets, forecasts): """ Root Mean Squared Error :param targets: :param forecasts: :return: """ fmean = [np.mean(i) for i in forecasts] return np.sqrt(np.nanmean((fmean - targets) ** 2)) def mape(targets, forecasts): """ Mean Average Percentual Error :param targets: :param forecasts: :return: """ return np.mean(np.abs(targets - forecasts) / targets) * 100 def smape(targets, forecasts, type=2): """ Symmetric Mean Average Percentual Error :param targets: :param forecasts: :param type: :return: """ if type == 1: return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2)) elif type == 2: return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100 else: return sum(np.abs(forecasts - targets)) / sum(forecasts + targets) def mape_interval(targets, forecasts): fmean = [np.mean(i) for i in forecasts] return np.mean(abs(fmean - targets) / fmean) * 100 def UStatistic(targets, forecasts): """ Theil's U Statistic :param targets: :param forecasts: :return: """ l = len(targets) naive = [] y = [] for k in np.arange(0,l-1): y.append((forecasts[k ] - targets[k ]) ** 2) naive.append((targets[k + 1] - targets[k]) ** 2) return np.sqrt(sum(y) / sum(naive)) def TheilsInequality(targets, forecasts): """ Theil’s Inequality Coefficient :param targets: :param forecasts: :return: """ res = targets - forecasts t = len(res) us = np.sqrt(sum([u**2 for u in res])) ys = np.sqrt(sum([y**2 for y in targets])) fs = np.sqrt(sum([f**2 for f in forecasts])) return us / (ys + fs) def BoxPierceStatistic(data, h): """ Q Statistic for Box-Pierce test :param data: :param h: :return: """ n = len(data) s = 0 for k in np.arange(1,h+1): r = acf(data, k) s += r**2 return n*s def BoxLjungStatistic(data, h): """ Q Statistic for Ljung–Box test :param data: :param h: :return: """ n = len(data) s = 0 for k in np.arange(1,h+1): r = acf(data, k) s += r**2 / (n -k) return n*(n-2)*s def sharpness(forecasts): """Sharpness - Mean size of the intervals""" tmp = [i[1] - i[0] for i in forecasts] return np.mean(tmp) def resolution(forecasts): """Resolution - Standard deviation of the intervals""" shp = sharpness(forecasts) tmp = [abs((i[1] - i[0]) - shp) for i in forecasts] return np.mean(tmp) def coverage(targets, forecasts): """Percent of""" preds = [] for i in np.arange(0, len(forecasts)): if targets[i] >= forecasts[i][0] and targets[i] <= forecasts[i][1]: preds.append(1) else: preds.append(0) return np.mean(preds) def pmf_to_cdf(density): ret = [] for row in density.index: tmp = [] prev = 0 for col in density.columns: prev += density[col][row] if not np.isnan(density[col][row]) else 0 tmp.append( prev ) ret.append(tmp) df = pd.DataFrame(ret, columns=density.columns) return df def heavyside_cdf(bins, targets): ret = [] for t in targets: result = [1 if b >= t else 0 for b in bins] ret.append(result) df = pd.DataFrame(ret, columns=bins) return df def crps(targets, densities): """Continuous Ranked Probability Score""" l = len(densities.columns) n = len(densities.index) Ff = pmf_to_cdf(densities) Fa = heavyside_cdf(densities.columns, targets) _crps = float(0.0) for k in densities.index: _crps += sum([ (Ff[col][k]-Fa[col][k])**2 for col in densities.columns]) return _crps / float(l * n) def get_point_statistics(data, model, indexer=None): """Condensate all measures for point forecasters""" if indexer is not None: ndata = np.array(indexer.get_data(data[model.order:])) else: ndata = np.array(data[model.order:]) if model.is_multivariate or indexer is None: forecasts = model.forecast(data) elif not model.is_multivariate and indexer is not None: forecasts = model.forecast(indexer.get_data(data)) if model.has_seasonality: nforecasts = np.array(forecasts) else: nforecasts = np.array(forecasts[:-1]) ret = list() try: ret.append(np.round(rmse(ndata, nforecasts), 2)) except: ret.append(np.nan) try: ret.append(np.round(smape(ndata, nforecasts), 2)) except: ret.append(np.nan) try: ret.append(np.round(UStatistic(ndata, nforecasts), 2)) except: ret.append(np.nan) return ret def get_interval_statistics(original, model): """Condensate all measures for interval forecasters""" ret = list() forecasts = model.forecastInterval(original) ret.append(round(sharpness(forecasts), 2)) ret.append(round(resolution(forecasts), 2)) ret.append(round(coverage(original[model.order:], forecasts[:-1]), 2)) return ret