Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.data","pyFTS.distributed","pyFTS.hyperparam","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.incremental","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:53,filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.data.rst","pyFTS.distributed.rst","pyFTS.hyperparam.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.incremental.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":{pyFTS:[2,0,0,"-"]},"pyFTS.benchmarks":{BSTS:[3,0,0,"-"],Measures:[3,0,0,"-"],ResidualAnalysis:[3,0,0,"-"],Tests:[3,0,0,"-"],Util:[3,0,0,"-"],arima:[3,0,0,"-"],benchmarks:[3,0,0,"-"],gaussianproc:[3,0,0,"-"],knn:[3,0,0,"-"],naive:[3,0,0,"-"],quantreg:[3,0,0,"-"]},"pyFTS.benchmarks.BSTS":{ARIMA:[3,1,1,""]},"pyFTS.benchmarks.BSTS.ARIMA":{forecast:[3,2,1,""],forecast_ahead:[3,2,1,""],forecast_ahead_distribution:[3,2,1,""],forecast_ahead_interval:[3,2,1,""],forecast_distribution:[3,2,1,""],forecast_interval:[3,2,1,""],inference:[3,2,1,""],train:[3,2,1,""]},"pyFTS.benchmarks.Measures":{TheilsInequality:[3,3,1,""],UStatistic:[3,3,1,""],acf:[3,3,1,""],brier_score:[3,3,1,""],coverage:[3,3,1,""],crps:[3,3,1,""],get_distribution_ahead_statistics:[3,3,1,""],get_distribution_statistics:[3,3,1,""],get_interval_ahead_statistics:[3,3,1,""],get_interval_statistics:[3,3,1,""],get_point_ahead_statistics:[3,3,1,""],get_point_statistics:[3,3,1,""],logarithm_score:[3,3,1,""],mape:[3,3,1,""],mape_interval:[3,3,1,""],pinball:[3,3,1,""],pinball_mean:[3,3,1,""],resolution:[3,3,1,""],rmse:[3,3,1,""],rmse_interval:[3,3,1,""],sharpness:[3,3,1,""],smape:[3,3,1,""],winkler_mean:[3,3,1,""],winkler_score:[3,3,1,""]},"pyFTS.benchmarks.ResidualAnalysis":{compare_residuals:[3,3,1,""],ljung_box_test:[3,3,1,""],plot_residuals_by_model:[3,3,1,""],residuals:[3,3,1,""],single_plot_residuals:[3,3,1,""]},"pyFTS.benchmarks.Tests":{BoxLjungStatistic:[3,3,1,""],BoxPierceStatistic:[3,3,1,""],format_experiment_table:[3,3,1,""],post_hoc_tests:[3,3,1,""],test_mean_equality:[3,3,1,""]},"pyFTS.benchmarks.Util":{analytic_tabular_dataframe:[3,3,1,""],analytical_data_columns:[3,3,1,""],base_dataframe_columns:[3,3,1,""],cast_dataframe_to_synthetic:[3,3,1,""],cast_dataframe_to_synthetic_interval:[3,3,1,""],cast_dataframe_to_synthetic_point:[3,3,1,""],cast_dataframe_to_synthetic_probabilistic:[3,3,1,""],check_ignore_list:[3,3,1,""],check_replace_list:[3,3,1,""],create_benchmark_tables:[3,3,1,""],extract_measure:[3,3,1,""],find_best:[3,3,1,""],get_dataframe_from_bd:[3,3,1,""],insert_benchmark:[3,3,1,""],interval_dataframe_analytic_columns:[3,3,1,""],interval_dataframe_synthetic_columns:[3,3,1,""],open_benchmark_db:[3,3,1,""],plot_dataframe_interval:[3,3,1,""],plot_dataframe_interval_pinball:[3,3,1,""],plot_dataframe_point:[3,3,1,""],plot_dataframe_probabilistic:[3,3,1,""],point_dataframe_analytic_columns:[3,3,1,""],point_dataframe_synthetic_columns:[3,3,1,""],probabilistic_dataframe_analytic_columns:[3,3,1,""],probabilistic_dataframe_synthetic_columns:[3,3,1,""],process_common_data2:[3,3,1,""],process_common_data:[3,3,1,""],save_dataframe_interval:[3,3,1,""],save_dataframe_point:[3,3,1,""],save_dataframe_probabilistic:[3,3,1,""],scale:[3,3,1,""],scale_params:[3,3,1,""],simple_synthetic_dataframe:[3,3,1,""],stats:[3,3,1,""],tabular_dataframe_columns:[3,3,1,""],unified_scaled_interval:[3,3,1,""],unified_scaled_interval_pinball:[3,3,1,""],unified_scaled_point:[3,3,1,""],unified_scaled_probabilistic:[3,3,1,""]},"pyFTS.benchmarks.arima":{ARIMA:[3,1,1,""]},"pyFTS.benchmarks.arima.ARIMA":{ar:[3,2,1,""],forecast:[3,2,1,""],forecast_ahead_distribution:[3,2,1,""],forecast_ahead_interval:[3,2,1,""],forecast_distribution:[3,2,1,""],forecast_interval:[3,2,1,""],ma:[3,2,1,""],train:[3,2,1,""]},"pyFTS.benchmarks.benchmarks":{SelecaoSimples_MenorRMSE:[3,3,1,""],common_process_interval_jobs:[3,3,1,""],common_process_point_jobs:[3,3,1,""],common_process_probabilistic_jobs:[3,3,1,""],common_process_time_jobs:[3,3,1,""],compareModelsPlot:[3,3,1,""],compareModelsTable:[3,3,1,""],get_benchmark_interval_methods:[3,3,1,""],get_benchmark_point_methods:[3,3,1,""],get_benchmark_probabilistic_methods:[3,3,1,""],get_interval_methods:[3,3,1,""],get_point_methods:[3,3,1,""],get_point_multivariate_methods:[3,3,1,""],get_probabilistic_methods:[3,3,1,""],multivariate_sliding_window_benchmarks2:[3,3,1,""],mv_run_interval2:[3,3,1,""],mv_run_point2:[3,3,1,""],mv_run_probabilistic2:[3,3,1,""],pftsExploreOrderAndPartitions:[3,3,1,""],plotCompared:[3,3,1,""],plot_compared_series:[3,3,1,""],plot_point:[3,3,1,""],print_distribution_statistics:[3,3,1,""],print_interval_statistics:[3,3,1,""],print_point_statistics:[3,3,1,""],process_interval_jobs2:[3,3,1,""],process_interval_jobs:[3,3,1,""],process_point_jobs2:[3,3,1,""],process_point_jobs:[3,3,1,""],process_probabilistic_jobs2:[3,3,1,""],process_probabilistic_jobs:[3,3,1,""],run_interval2:[3,3,1,""],run_interval:[3,3,1,""],run_point2:[3,3,1,""],run_point:[3,3,1,""],run_probabilistic2:[3,3,1,""],run_probabilistic:[3,3,1,""],simpleSearch_RMSE:[3,3,1,""],sliding_window_benchmarks2:[3,3,1,""],sliding_window_benchmarks:[3,3,1,""],train_test_time:[3,3,1,""]},"pyFTS.benchmarks.gaussianproc":{GPR:[3,1,1,""]},"pyFTS.benchmarks.gaussianproc.GPR":{forecast:[3,2,1,""],forecast_ahead:[3,2,1,""],forecast_ahead_distribution:[3,2,1,""],forecast_ahead_interval:[3,2,1,""],forecast_distribution:[3,2,1,""],forecast_interval:[3,2,1,""],train:[3,2,1,""]},"pyFTS.benchmarks.knn":{KNearestNeighbors:[3,1,1,""]},"pyFTS.benchmarks.knn.KNearestNeighbors":{forecast:[3,2,1,""],forecast_ahead_distribution:[3,2,1,""],forecast_ahead_interval:[3,2,1,""],forecast_distribution:[3,2,1,""],forecast_interval:[3,2,1,""],knn:[3,2,1,""],train:[3,2,1,""]},"pyFTS.benchmarks.naive":{Naive:[3,1,1,""]},"pyFTS.benchmarks.naive.Naive":{forecast:[3,2,1,""]},"pyFTS.benchmarks.quantreg":{QuantileRegression:[3,1,1,""]},"pyFTS.benchmarks.quantreg.QuantileRegression":{forecast:[3,2,1,""],forecast_ahead_distribution:[3,2,1,""],forecast_ahead_interval:[3,2,1,""],forecast_distribution:[3,2,1,""],forecast_interval:[3,2,1,""],interval_to_interval:[3,2,1,""],linearmodel:[3,2,1,""],point_to_interval:[3,2,1,""],train:[3,2,1,""]},"pyFTS.common":{Composite:[4,0,0,"-"],FLR:[4,0,0,"-"],FuzzySet:[4,0,0,"-"],Membership:[4,0,0,"-"],SortedCollection:[4,0,0,"-"],Transformations:[4,0,0,"-"],Util:[4,0,0,"-"],flrg:[4,0,0,"-"],fts:[4,0,0,"-"],tree:[4,0,0,"-"]},"pyFTS.common.Composite":{FuzzySet:[4,1,1,""]},"pyFTS.common.Composite.FuzzySet":{append:[4,2,1,""],append_set:[4,2,1,""],membership:[4,2,1,""],transform:[4,2,1,""]},"pyFTS.common.FLR":{FLR:[4,1,1,""],IndexedFLR:[4,1,1,""],generate_high_order_recurrent_flr:[4,3,1,""],generate_indexed_flrs:[4,3,1,""],generate_non_recurrent_flrs:[4,3,1,""],generate_recurrent_flrs:[4,3,1,""]},"pyFTS.common.FuzzySet":{FuzzySet:[4,1,1,""],check_bounds:[4,3,1,""],check_bounds_index:[4,3,1,""],fuzzyfy:[4,3,1,""],fuzzyfy_instance:[4,3,1,""],fuzzyfy_instances:[4,3,1,""],fuzzyfy_series:[4,3,1,""],fuzzyfy_series_old:[4,3,1,""],get_fuzzysets:[4,3,1,""],get_maximum_membership_fuzzyset:[4,3,1,""],get_maximum_membership_fuzzyset_index:[4,3,1,""],grant_bounds:[4,3,1,""],set_ordered:[4,3,1,""]},"pyFTS.common.FuzzySet.FuzzySet":{membership:[4,2,1,""],partition_function:[4,2,1,""],transform:[4,2,1,""]},"pyFTS.common.Membership":{bellmf:[4,3,1,""],gaussmf:[4,3,1,""],sigmf:[4,3,1,""],singleton:[4,3,1,""],trapmf:[4,3,1,""],trimf:[4,3,1,""]},"pyFTS.common.SortedCollection":{SortedCollection:[4,1,1,""]},"pyFTS.common.SortedCollection.SortedCollection":{around:[4,2,1,""],between:[4,2,1,""],clear:[4,2,1,""],copy:[4,2,1,""],count:[4,2,1,""],find:[4,2,1,""],find_ge:[4,2,1,""],find_gt:[4,2,1,""],find_le:[4,2,1,""],find_lt:[4,2,1,""],index:[4,2,1,""],insert:[4,2,1,""],insert_right:[4,2,1,""],inside:[4,2,1,""],key:[4,4,1,""],remove:[4,2,1,""]},"pyFTS.common.Transformations":{AdaptiveExpectation:[4,1,1,""],BoxCox:[4,1,1,""],Differential:[4,1,1,""],Scale:[4,1,1,""],Transformation:[4,1,1,""],Z:[4,3,1,""],aggregate:[4,3,1,""],roi:[4,3,1,""],smoothing:[4,3,1,""]},"pyFTS.common.Transformations.AdaptiveExpectation":{apply:[4,2,1,""],inverse:[4,2,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.BoxCox":{apply:[4,2,1,""],inverse:[4,2,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Differential":{apply:[4,2,1,""],inverse:[4,2,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Scale":{apply:[4,2,1,""],inverse:[4,2,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Transformation":{apply:[4,2,1,""],inverse:[4,2,1,""]},"pyFTS.common.Util":{current_milli_time:[4,3,1,""],draw_sets_on_axis:[4,3,1,""],enumerate2:[4,3,1,""],load_env:[4,3,1,""],load_obj:[4,3,1,""],persist_env:[4,3,1,""],persist_obj:[4,3,1,""],plot_compared_intervals_ahead:[4,3,1,""],plot_density_rectange:[4,3,1,""],plot_distribution2:[4,3,1,""],plot_distribution:[4,3,1,""],plot_distribution_tiled:[4,3,1,""],plot_interval2:[4,3,1,""],plot_interval:[4,3,1,""],plot_probability_distributions:[4,3,1,""],plot_rules:[4,3,1,""],show_and_save_image:[4,3,1,""],sliding_window:[4,3,1,""],uniquefilename:[4,3,1,""]},"pyFTS.common.flrg":{FLRG:[4,1,1,""]},"pyFTS.common.flrg.FLRG":{append_rhs:[4,2,1,""],get_key:[4,2,1,""],get_lower:[4,2,1,""],get_membership:[4,2,1,""],get_midpoint:[4,2,1,""],get_midpoints:[4,2,1,""],get_upper:[4,2,1,""],reset_calculated_values:[4,2,1,""]},"pyFTS.common.fts":{FTS:[4,1,1,""]},"pyFTS.common.fts.FTS":{append_log:[4,2,1,""],append_rule:[4,2,1,""],append_transformation:[4,2,1,""],apply_inverse_transformations:[4,2,1,""],apply_transformations:[4,2,1,""],clip_uod:[4,2,1,""],clone_parameters:[4,2,1,""],fit:[4,2,1,""],forecast:[4,2,1,""],forecast_ahead:[4,2,1,""],forecast_ahead_distribution:[4,2,1,""],forecast_ahead_interval:[4,2,1,""],forecast_ahead_multivariate:[4,2,1,""],forecast_distribution:[4,2,1,""],forecast_interval:[4,2,1,""],forecast_multivariate:[4,2,1,""],fuzzy:[4,2,1,""],get_UoD:[4,2,1,""],len_total:[4,2,1,""],merge:[4,2,1,""],offset:[4,2,1,""],predict:[4,2,1,""],reset_calculated_values:[4,2,1,""],train:[4,2,1,""]},"pyFTS.common.tree":{FLRGTree:[4,1,1,""],FLRGTreeNode:[4,1,1,""],build_tree_without_order:[4,3,1,""],flat:[4,3,1,""]},"pyFTS.common.tree.FLRGTreeNode":{appendChild:[4,2,1,""],getChildren:[4,2,1,""],getStr:[4,2,1,""],paths:[4,2,1,""]},"pyFTS.data":{AirPassengers:[5,0,0,"-"],Bitcoin:[5,0,0,"-"],DowJones:[5,0,0,"-"],EURGBP:[5,0,0,"-"],EURUSD:[5,0,0,"-"],Enrollments:[5,0,0,"-"],Ethereum:[5,0,0,"-"],GBPUSD:[5,0,0,"-"],INMET:[5,0,0,"-"],Malaysia:[5,0,0,"-"],NASDAQ:[5,0,0,"-"],SONDA:[5,0,0,"-"],SP500:[5,0,0,"-"],TAIEX:[5,0,0,"-"],artificial:[5,0,0,"-"],common:[5,0,0,"-"],henon:[5,0,0,"-"],logistic_map:[5,0,0,"-"],lorentz:[5,0,0,"-"],mackey_glass:[5,0,0,"-"],rossler:[5,0,0,"-"],sunspots:[5,0,0,"-"]},"pyFTS.data.AirPassengers":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.Bitcoin":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.DowJones":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.EURGBP":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.EURUSD":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.Enrollments":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.Ethereum":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.GBPUSD":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.INMET":{get_dataframe:[5,3,1,""]},"pyFTS.data.Malaysia":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.NASDAQ":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.SONDA":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.SP500":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.TAIEX":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.artificial":{SignalEmulator:[5,1,1,""],generate_gaussian_linear:[5,3,1,""],generate_linear_periodic_gaussian:[5,3,1,""],generate_sinoidal_periodic_gaussian:[5,3,1,""],generate_uniform_linear:[5,3,1,""],random_walk:[5,3,1,""],white_noise:[5,3,1,""]},"pyFTS.data.artificial.SignalEmulator":{blip:[5,2,1,""],incremental_gaussian:[5,2,1,""],periodic_gaussian:[5,2,1,""],run:[5,2,1,""],stationary_gaussian:[5,2,1,""]},"pyFTS.data.common":{get_dataframe:[5,3,1,""]},"pyFTS.data.henon":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.logistic_map":{get_data:[5,3,1,""]},"pyFTS.data.lorentz":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.mackey_glass":{get_data:[5,3,1,""]},"pyFTS.data.rossler":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.data.sunspots":{get_data:[5,3,1,""],get_dataframe:[5,3,1,""]},"pyFTS.distributed":{spark:[6,0,0,"-"]},"pyFTS.distributed.spark":{create_multivariate_model:[6,3,1,""],create_spark_conf:[6,3,1,""],create_univariate_model:[6,3,1,""],distributed_predict:[6,3,1,""],distributed_train:[6,3,1,""],get_clustered_partitioner:[6,3,1,""],get_partitioner:[6,3,1,""],get_variables:[6,3,1,""],share_parameters:[6,3,1,""],slave_forecast_multivariate:[6,3,1,""],slave_forecast_univariate:[6,3,1,""],slave_train_multivariate:[6,3,1,""],slave_train_univariate:[6,3,1,""]},"pyFTS.hyperparam":{Util:[7,0,0,"-"]},"pyFTS.hyperparam.Util":{create_hyperparam_tables:[7,3,1,""],insert_hyperparam:[7,3,1,""],open_hyperparam_db:[7,3,1,""]},"pyFTS.models":{chen:[8,0,0,"-"],cheng:[8,0,0,"-"],ensemble:[9,0,0,"-"],hofts:[8,0,0,"-"],hwang:[8,0,0,"-"],ifts:[8,0,0,"-"],incremental:[10,0,0,"-"],ismailefendi:[8,0,0,"-"],multivariate:[11,0,0,"-"],nonstationary:[12,0,0,"-"],pwfts:[8,0,0,"-"],sadaei:[8,0,0,"-"],seasonal:[13,0,0,"-"],song:[8,0,0,"-"],yu:[8,0,0,"-"]},"pyFTS.models.chen":{ConventionalFLRG:[8,1,1,""],ConventionalFTS:[8,1,1,""]},"pyFTS.models.chen.ConventionalFLRG":{append_rhs:[8,2,1,""],get_key:[8,2,1,""]},"pyFTS.models.chen.ConventionalFTS":{forecast:[8,2,1,""],generate_flrg:[8,2,1,""],train:[8,2,1,""]},"pyFTS.models.cheng":{TrendWeightedFLRG:[8,1,1,""],TrendWeightedFTS:[8,1,1,""]},"pyFTS.models.cheng.TrendWeightedFLRG":{weights:[8,2,1,""]},"pyFTS.models.cheng.TrendWeightedFTS":{generate_FLRG:[8,2,1,""]},"pyFTS.models.ensemble":{ensemble:[9,0,0,"-"],multiseasonal:[9,0,0,"-"]},"pyFTS.models.ensemble.ensemble":{AllMethodEnsembleFTS:[9,1,1,""],EnsembleFTS:[9,1,1,""],SimpleEnsembleFTS:[9,1,1,""],sampler:[9,3,1,""]},"pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS":{set_transformations:[9,2,1,""],train:[9,2,1,""]},"pyFTS.models.ensemble.ensemble.EnsembleFTS":{append_model:[9,2,1,""],forecast:[9,2,1,""],forecast_ahead_distribution:[9,2,1,""],forecast_ahead_interval:[9,2,1,""],forecast_distribution:[9,2,1,""],forecast_interval:[9,2,1,""],get_UoD:[9,2,1,""],get_distribution_interquantile:[9,2,1,""],get_interval:[9,2,1,""],get_models_forecasts:[9,2,1,""],get_point:[9,2,1,""],train:[9,2,1,""]},"pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS":{train:[9,2,1,""]},"pyFTS.models.ensemble.multiseasonal":{SeasonalEnsembleFTS:[9,1,1,""],train_individual_model:[9,3,1,""]},"pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS":{forecast_distribution:[9,2,1,""],train:[9,2,1,""],update_uod:[9,2,1,""]},"pyFTS.models.hofts":{HighOrderFLRG:[8,1,1,""],HighOrderFTS:[8,1,1,""],WeightedHighOrderFLRG:[8,1,1,""],WeightedHighOrderFTS:[8,1,1,""]},"pyFTS.models.hofts.HighOrderFLRG":{append_lhs:[8,2,1,""],append_rhs:[8,2,1,""]},"pyFTS.models.hofts.HighOrderFTS":{configure_lags:[8,2,1,""],forecast:[8,2,1,""],generate_flrg:[8,2,1,""],generate_flrg_fuzzyfied:[8,2,1,""],generate_lhs_flrg:[8,2,1,""],generate_lhs_flrg_fuzzyfied:[8,2,1,""],train:[8,2,1,""]},"pyFTS.models.hofts.WeightedHighOrderFLRG":{append_lhs:[8,2,1,""],append_rhs:[8,2,1,""],get_lower:[8,2,1,""],get_midpoint:[8,2,1,""],get_upper:[8,2,1,""],weights:[8,2,1,""]},"pyFTS.models.hofts.WeightedHighOrderFTS":{generate_lhs_flrg_fuzzyfied:[8,2,1,""]},"pyFTS.models.hwang":{HighOrderFTS:[8,1,1,""]},"pyFTS.models.hwang.HighOrderFTS":{configure_lags:[8,2,1,""],forecast:[8,2,1,""],train:[8,2,1,""]},"pyFTS.models.ifts":{IntervalFTS:[8,1,1,""],WeightedIntervalFTS:[8,1,1,""]},"pyFTS.models.ifts.IntervalFTS":{forecast_ahead_interval:[8,2,1,""],forecast_interval:[8,2,1,""],get_lower:[8,2,1,""],get_sequence_membership:[8,2,1,""],get_upper:[8,2,1,""]},"pyFTS.models.ifts.WeightedIntervalFTS":{forecast_ahead_interval:[8,2,1,""],forecast_interval:[8,2,1,""],get_lower:[8,2,1,""],get_sequence_membership:[8,2,1,""],get_upper:[8,2,1,""]},"pyFTS.models.incremental":{IncrementalEnsemble:[10,0,0,"-"],TimeVariant:[10,0,0,"-"]},"pyFTS.models.incremental.IncrementalEnsemble":{IncrementalEnsembleFTS:[10,1,1,""]},"pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS":{forecast:[10,2,1,""],forecast_ahead:[10,2,1,""],offset:[10,2,1,""],train:[10,2,1,""]},"pyFTS.models.incremental.TimeVariant":{Retrainer:[10,1,1,""]},"pyFTS.models.incremental.TimeVariant.Retrainer":{forecast:[10,2,1,""],forecast_ahead:[10,2,1,""],offset:[10,2,1,""],train:[10,2,1,""]},"pyFTS.models.ismailefendi":{ImprovedWeightedFLRG:[8,1,1,""],ImprovedWeightedFTS:[8,1,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFLRG":{append_rhs:[8,2,1,""],weights:[8,2,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFTS":{forecast:[8,2,1,""],generate_flrg:[8,2,1,""],train:[8,2,1,""]},"pyFTS.models.multivariate":{FLR:[11,0,0,"-"],cmvfts:[11,0,0,"-"],common:[11,0,0,"-"],flrg:[11,0,0,"-"],granular:[11,0,0,"-"],grid:[11,0,0,"-"],mvfts:[11,0,0,"-"],partitioner:[11,0,0,"-"],variable:[11,0,0,"-"],wmvfts:[11,0,0,"-"]},"pyFTS.models.multivariate.FLR":{FLR:[11,1,1,""]},"pyFTS.models.multivariate.FLR.FLR":{set_lhs:[11,2,1,""],set_rhs:[11,2,1,""]},"pyFTS.models.multivariate.cmvfts":{ClusteredMVFTS:[11,1,1,""]},"pyFTS.models.multivariate.cmvfts.ClusteredMVFTS":{check_data:[11,2,1,""],forecast:[11,2,1,""],forecast_ahead_distribution:[11,2,1,""],forecast_ahead_multivariate:[11,2,1,""],forecast_distribution:[11,2,1,""],forecast_interval:[11,2,1,""],forecast_multivariate:[11,2,1,""],fuzzyfy:[11,2,1,""],train:[11,2,1,""]},"pyFTS.models.multivariate.common":{MultivariateFuzzySet:[11,1,1,""],fuzzyfy_instance:[11,3,1,""],fuzzyfy_instance_clustered:[11,3,1,""]},"pyFTS.models.multivariate.common.MultivariateFuzzySet":{append_set:[11,2,1,""],membership:[11,2,1,""],set_target_variable:[11,2,1,""]},"pyFTS.models.multivariate.flrg":{FLRG:[11,1,1,""]},"pyFTS.models.multivariate.flrg.FLRG":{append_rhs:[11,2,1,""],get_lower:[11,2,1,""],get_membership:[11,2,1,""],get_upper:[11,2,1,""],set_lhs:[11,2,1,""]},"pyFTS.models.multivariate.granular":{GranularWMVFTS:[11,1,1,""]},"pyFTS.models.multivariate.granular.GranularWMVFTS":{train:[11,2,1,""]},"pyFTS.models.multivariate.grid":{GridCluster:[11,1,1,""],IncrementalGridCluster:[11,1,1,""]},"pyFTS.models.multivariate.grid.GridCluster":{build:[11,2,1,""],defuzzyfy:[11,2,1,""]},"pyFTS.models.multivariate.grid.IncrementalGridCluster":{fuzzyfy:[11,2,1,""],incremental_search:[11,2,1,""],prune:[11,2,1,""]},"pyFTS.models.multivariate.mvfts":{MVFTS:[11,1,1,""],product_dict:[11,3,1,""]},"pyFTS.models.multivariate.mvfts.MVFTS":{append_variable:[11,2,1,""],apply_transformations:[11,2,1,""],clone_parameters:[11,2,1,""],forecast:[11,2,1,""],forecast_ahead:[11,2,1,""],forecast_ahead_interval:[11,2,1,""],forecast_interval:[11,2,1,""],format_data:[11,2,1,""],generate_flrg:[11,2,1,""],generate_flrs:[11,2,1,""],generate_lhs_flrs:[11,2,1,""],train:[11,2,1,""]},"pyFTS.models.multivariate.partitioner":{MultivariatePartitioner:[11,1,1,""]},"pyFTS.models.multivariate.partitioner.MultivariatePartitioner":{append:[11,2,1,""],build:[11,2,1,""],build_index:[11,2,1,""],change_target_variable:[11,2,1,""],format_data:[11,2,1,""],fuzzyfy:[11,2,1,""],prune:[11,2,1,""],search:[11,2,1,""]},"pyFTS.models.multivariate.variable":{Variable:[11,1,1,""]},"pyFTS.models.multivariate.variable.Variable":{apply_inverse_transformations:[11,2,1,""],apply_transformations:[11,2,1,""],build:[11,2,1,""]},"pyFTS.models.multivariate.wmvfts":{WeightedFLRG:[11,1,1,""],WeightedMVFTS:[11,1,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedFLRG":{append_rhs:[11,2,1,""],get_lower:[11,2,1,""],get_midpoint:[11,2,1,""],get_upper:[11,2,1,""],weights:[11,2,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedMVFTS":{generate_flrg:[11,2,1,""]},"pyFTS.models.nonstationary":{common:[12,0,0,"-"],cvfts:[12,0,0,"-"],flrg:[12,0,0,"-"],honsfts:[12,0,0,"-"],nsfts:[12,0,0,"-"],partitioners:[12,0,0,"-"],perturbation:[12,0,0,"-"],util:[12,0,0,"-"]},"pyFTS.models.nonstationary.common":{FuzzySet:[12,1,1,""],check_bounds:[12,3,1,""],check_bounds_index:[12,3,1,""],fuzzify:[12,3,1,""],fuzzySeries:[12,3,1,""],window_index:[12,3,1,""]},"pyFTS.models.nonstationary.common.FuzzySet":{get_lower:[12,2,1,""],get_midpoint:[12,2,1,""],get_upper:[12,2,1,""],membership:[12,2,1,""],perform_location:[12,2,1,""],perform_width:[12,2,1,""],perturbate_parameters:[12,2,1,""]},"pyFTS.models.nonstationary.cvfts":{ConditionalVarianceFTS:[12,1,1,""],HighOrderNonstationaryFLRG:[12,1,1,""]},"pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS":{forecast:[12,2,1,""],forecast_interval:[12,2,1,""],generate_flrg:[12,2,1,""],perturbation_factors:[12,2,1,""],perturbation_factors__old:[12,2,1,""],train:[12,2,1,""]},"pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG":{append_lhs:[12,2,1,""],append_rhs:[12,2,1,""]},"pyFTS.models.nonstationary.flrg":{NonStationaryFLRG:[12,1,1,""]},"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":{get_key:[12,2,1,""],get_lower:[12,2,1,""],get_membership:[12,2,1,""],get_midpoint:[12,2,1,""],get_upper:[12,2,1,""],unpack_args:[12,2,1,""]},"pyFTS.models.nonstationary.honsfts":{HighOrderNonStationaryFLRG:[12,1,1,""],HighOrderNonStationaryFTS:[12,1,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG":{append_lhs:[12,2,1,""],append_rhs:[12,2,1,""],get_lower:[12,2,1,""],get_midpoint:[12,2,1,""],get_upper:[12,2,1,""],weights:[12,2,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS":{configure_lags:[12,2,1,""],forecast:[12,2,1,""],generate_flrg:[12,2,1,""],train:[12,2,1,""]},"pyFTS.models.nonstationary.nsfts":{ConventionalNonStationaryFLRG:[12,1,1,""],NonStationaryFTS:[12,1,1,""],WeightedNonStationaryFLRG:[12,1,1,""],WeightedNonStationaryFTS:[12,1,1,""]},"pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG":{append_rhs:[12,2,1,""],get_key:[12,2,1,""]},"pyFTS.models.nonstationary.nsfts.NonStationaryFTS":{conditional_perturbation_factors:[12,2,1,""],forecast:[12,2,1,""],forecast_interval:[12,2,1,""],generate_flrg:[12,2,1,""],train:[12,2,1,""]},"pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG":{append_rhs:[12,2,1,""],get_key:[12,2,1,""],get_midpoint:[12,2,1,""],weights:[12,2,1,""]},"pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS":{generate_flrg:[12,2,1,""],train:[12,2,1,""]},"pyFTS.models.nonstationary.partitioners":{PolynomialNonStationaryPartitioner:[12,1,1,""],SimpleNonStationaryPartitioner:[12,1,1,""],simplenonstationary_gridpartitioner_builder:[12,3,1,""]},"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":{build:[12,2,1,""],get_polynomial_perturbations:[12,2,1,""],poly_width:[12,2,1,""],scale_down:[12,2,1,""],scale_up:[12,2,1,""]},"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":{build:[12,2,1,""]},"pyFTS.models.nonstationary.perturbation":{exponential:[12,3,1,""],linear:[12,3,1,""],periodic:[12,3,1,""],polynomial:[12,3,1,""]},"pyFTS.models.nonstationary.util":{plot_sets:[12,3,1,""],plot_sets_conditional:[12,3,1,""]},"pyFTS.models.pwfts":{ProbabilisticWeightedFLRG:[8,1,1,""],ProbabilisticWeightedFTS:[8,1,1,""],visualize_distributions:[8,3,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFLRG":{append_rhs:[8,2,1,""],get_lower:[8,2,1,""],get_membership:[8,2,1,""],get_midpoint:[8,2,1,""],get_upper:[8,2,1,""],lhs_conditional_probability:[8,2,1,""],lhs_conditional_probability_fuzzyfied:[8,2,1,""],partition_function:[8,2,1,""],rhs_conditional_probability:[8,2,1,""],rhs_unconditional_probability:[8,2,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFTS":{add_new_PWFLGR:[8,2,1,""],flrg_lhs_conditional_probability:[8,2,1,""],flrg_lhs_conditional_probability_fuzzyfied:[8,2,1,""],flrg_lhs_unconditional_probability:[8,2,1,""],flrg_rhs_conditional_probability:[8,2,1,""],forecast:[8,2,1,""],forecast_ahead:[8,2,1,""],forecast_ahead_distribution:[8,2,1,""],forecast_ahead_interval:[8,2,1,""],forecast_distribution:[8,2,1,""],forecast_distribution_from_distribution:[8,2,1,""],forecast_interval:[8,2,1,""],generate_flrg2:[8,2,1,""],generate_flrg:[8,2,1,""],generate_flrg_fuzzyfied:[8,2,1,""],generate_lhs_flrg:[8,2,1,""],generate_lhs_flrg_fuzzyfied:[8,2,1,""],get_lower:[8,2,1,""],get_midpoint:[8,2,1,""],get_sets_from_both_fuzzyfication:[8,2,1,""],get_upper:[8,2,1,""],interval_heuristic:[8,2,1,""],interval_quantile:[8,2,1,""],point_expected_value:[8,2,1,""],point_heuristic:[8,2,1,""],pwflrg_lhs_memberhip_fuzzyfied:[8,2,1,""],train:[8,2,1,""],update_model:[8,2,1,""]},"pyFTS.models.sadaei":{ExponentialyWeightedFLRG:[8,1,1,""],ExponentialyWeightedFTS:[8,1,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFLRG":{append_rhs:[8,2,1,""],weights:[8,2,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFTS":{forecast:[8,2,1,""],generate_flrg:[8,2,1,""],train:[8,2,1,""]},"pyFTS.models.seasonal":{SeasonalIndexer:[13,0,0,"-"],cmsfts:[13,0,0,"-"],common:[13,0,0,"-"],msfts:[13,0,0,"-"],partitioner:[13,0,0,"-"],sfts:[13,0,0,"-"]},"pyFTS.models.seasonal.SeasonalIndexer":{DataFrameSeasonalIndexer:[13,1,1,""],DateTimeSeasonalIndexer:[13,1,1,""],LinearSeasonalIndexer:[13,1,1,""],SeasonalIndexer:[13,1,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":{get_data:[13,2,1,""],get_data_by_season:[13,2,1,""],get_index_by_season:[13,2,1,""],get_season_by_index:[13,2,1,""],get_season_of_data:[13,2,1,""],set_data:[13,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":{get_data:[13,2,1,""],get_data_by_season:[13,2,1,""],get_index:[13,2,1,""],get_index_by_season:[13,2,1,""],get_season_by_index:[13,2,1,""],get_season_of_data:[13,2,1,""],set_data:[13,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":{get_data:[13,2,1,""],get_index_by_season:[13,2,1,""],get_season_by_index:[13,2,1,""],get_season_of_data:[13,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":{get_data:[13,2,1,""],get_data_by_season:[13,2,1,""],get_index:[13,2,1,""],get_index_by_season:[13,2,1,""],get_season_by_index:[13,2,1,""],get_season_of_data:[13,2,1,""]},"pyFTS.models.seasonal.cmsfts":{ContextualMultiSeasonalFTS:[13,1,1,""],ContextualSeasonalFLRG:[13,1,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS":{forecast:[13,2,1,""],forecast_ahead:[13,2,1,""],generate_flrg:[13,2,1,""],get_midpoints:[13,2,1,""],train:[13,2,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualSeasonalFLRG":{append_rhs:[13,2,1,""]},"pyFTS.models.seasonal.common":{DateTime:[13,1,1,""],FuzzySet:[13,1,1,""],strip_datepart:[13,3,1,""]},"pyFTS.models.seasonal.common.DateTime":{day_of_month:[13,4,1,""],day_of_week:[13,4,1,""],day_of_year:[13,4,1,""],half:[13,4,1,""],hour:[13,4,1,""],hour_of_month:[13,4,1,""],hour_of_week:[13,4,1,""],hour_of_year:[13,4,1,""],minute:[13,4,1,""],minute_of_day:[13,4,1,""],minute_of_month:[13,4,1,""],minute_of_week:[13,4,1,""],minute_of_year:[13,4,1,""],month:[13,4,1,""],quarter:[13,4,1,""],second_of_day:[13,4,1,""],second_of_hour:[13,4,1,""],second_of_minute:[13,4,1,""],sixth:[13,4,1,""],third:[13,4,1,""],year:[13,4,1,""]},"pyFTS.models.seasonal.common.FuzzySet":{transform:[13,2,1,""]},"pyFTS.models.seasonal.msfts":{MultiSeasonalFTS:[13,1,1,""]},"pyFTS.models.seasonal.msfts.MultiSeasonalFTS":{forecast:[13,2,1,""],forecast_ahead:[13,2,1,""],generate_flrg:[13,2,1,""],train:[13,2,1,""]},"pyFTS.models.seasonal.partitioner":{TimeGridPartitioner:[13,1,1,""]},"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":{build:[13,2,1,""],build_index:[13,2,1,""],extractor:[13,2,1,""],plot:[13,2,1,""],search:[13,2,1,""]},"pyFTS.models.seasonal.sfts":{SeasonalFLRG:[13,1,1,""],SeasonalFTS:[13,1,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFLRG":{append_rhs:[13,2,1,""],get_key:[13,2,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFTS":{forecast:[13,2,1,""],generate_flrg:[13,2,1,""],get_midpoints:[13,2,1,""],train:[13,2,1,""]},"pyFTS.models.song":{ConventionalFTS:[8,1,1,""]},"pyFTS.models.song.ConventionalFTS":{flr_membership_matrix:[8,2,1,""],forecast:[8,2,1,""],operation_matrix:[8,2,1,""],train:[8,2,1,""]},"pyFTS.models.yu":{WeightedFLRG:[8,1,1,""],WeightedFTS:[8,1,1,""]},"pyFTS.models.yu.WeightedFLRG":{append_rhs:[8,2,1,""],weights:[8,2,1,""]},"pyFTS.models.yu.WeightedFTS":{forecast:[8,2,1,""],generate_FLRG:[8,2,1,""],train:[8,2,1,""]},"pyFTS.partitioners":{CMeans:[14,0,0,"-"],Entropy:[14,0,0,"-"],FCM:[14,0,0,"-"],Grid:[14,0,0,"-"],Huarng:[14,0,0,"-"],Simple:[14,0,0,"-"],Singleton:[14,0,0,"-"],SubClust:[14,0,0,"-"],Util:[14,0,0,"-"],parallel_util:[14,0,0,"-"],partitioner:[14,0,0,"-"]},"pyFTS.partitioners.CMeans":{CMeansPartitioner:[14,1,1,""],c_means:[14,3,1,""],distance:[14,3,1,""]},"pyFTS.partitioners.CMeans.CMeansPartitioner":{build:[14,2,1,""]},"pyFTS.partitioners.Entropy":{EntropyPartitioner:[14,1,1,""],PMF:[14,3,1,""],bestSplit:[14,3,1,""],entropy:[14,3,1,""],informationGain:[14,3,1,""],splitAbove:[14,3,1,""],splitBelow:[14,3,1,""]},"pyFTS.partitioners.Entropy.EntropyPartitioner":{build:[14,2,1,""]},"pyFTS.partitioners.FCM":{FCMPartitioner:[14,1,1,""],fuzzy_cmeans:[14,3,1,""],fuzzy_distance:[14,3,1,""],membership:[14,3,1,""]},"pyFTS.partitioners.FCM.FCMPartitioner":{build:[14,2,1,""]},"pyFTS.partitioners.Grid":{GridPartitioner:[14,1,1,""]},"pyFTS.partitioners.Grid.GridPartitioner":{build:[14,2,1,""]},"pyFTS.partitioners.Huarng":{HuarngPartitioner:[14,1,1,""]},"pyFTS.partitioners.Huarng.HuarngPartitioner":{build:[14,2,1,""]},"pyFTS.partitioners.Simple":{SimplePartitioner:[14,1,1,""]},"pyFTS.partitioners.Simple.SimplePartitioner":{append:[14,2,1,""],append_complex:[14,2,1,""]},"pyFTS.partitioners.Singleton":{SingletonPartitioner:[14,1,1,""]},"pyFTS.partitioners.Singleton.SingletonPartitioner":{build:[14,2,1,""]},"pyFTS.partitioners.SubClust":{SubClustPartitioner:[14,1,1,""],imax:[14,3,1,""],subclust:[14,3,1,""]},"pyFTS.partitioners.SubClust.SubClustPartitioner":{build:[14,2,1,""]},"pyFTS.partitioners.Util":{explore_partitioners:[14,3,1,""],plot_partitioners:[14,3,1,""],plot_sets:[14,3,1,""]},"pyFTS.partitioners.parallel_util":{explore_partitioners:[14,3,1,""]},"pyFTS.partitioners.partitioner":{Partitioner:[14,1,1,""]},"pyFTS.partitioners.partitioner.Partitioner":{build:[14,2,1,""],build_index:[14,2,1,""],check_bounds:[14,2,1,""],defuzzyfy:[14,2,1,""],extractor:[14,2,1,""],fuzzyfy:[14,2,1,""],get_name:[14,2,1,""],lower_set:[14,2,1,""],plot:[14,2,1,""],plot_set:[14,2,1,""],search:[14,2,1,""],upper_set:[14,2,1,""]},"pyFTS.probabilistic":{ProbabilityDistribution:[15,0,0,"-"],kde:[15,0,0,"-"]},"pyFTS.probabilistic.ProbabilityDistribution":{ProbabilityDistribution:[15,1,1,""],from_point:[15,3,1,""]},"pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution":{append:[15,2,1,""],append_interval:[15,2,1,""],averageloglikelihood:[15,2,1,""],build_cdf_qtl:[15,2,1,""],crossentropy:[15,2,1,""],cumulative:[15,2,1,""],density:[15,2,1,""],differential_offset:[15,2,1,""],empiricalloglikelihood:[15,2,1,""],entropy:[15,2,1,""],expected_value:[15,2,1,""],kullbackleiblerdivergence:[15,2,1,""],plot:[15,2,1,""],pseudologlikelihood:[15,2,1,""],quantile:[15,2,1,""],set:[15,2,1,""]},"pyFTS.probabilistic.kde":{KernelSmoothing:[15,1,1,""]},"pyFTS.probabilistic.kde.KernelSmoothing":{kernel_function:[15,2,1,""],probability:[15,2,1,""]},pyFTS:{benchmarks:[3,0,0,"-"],common:[4,0,0,"-"],conf:[2,0,0,"-"],data:[5,0,0,"-"],distributed:[6,0,0,"-"],hyperparam:[7,0,0,"-"],models:[8,0,0,"-"],partitioners:[14,0,0,"-"],probabilistic:[15,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","function","Python function"],"4":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:function","4":"py:attribute"},terms:{"261459a0":5,"57a":5,"5egspc":5,"boolean":[3,4,14],"case":4,"class":[3,4,5,8,9,10,11,12,13,14,15,16],"default":[3,4,5,8,9,10,11,13],"enum":13,"fa\u00e7ad":3,"final":[4,5],"float":[3,5],"function":[3,4,7,10,11,12,13,14,15,16],"guimar\u00e3":[0,8],"h\u00e9non":5,"import":[4,11,16],"int":[8,16],"na\u00efv":3,"new":[4,9,11,14],"organiza\u00e7\u00e3o":5,"petr\u00f4nio":8,"r\u00f6ssler":5,"return":[3,4,5,6,7,8,9,10,11,12,13,14,15],"short":[4,8,16],"true":[3,4,5,11],"try":4,"var":[5,11],"while":4,And:3,FTS:[0,3,4,7,8,9,10,11,12,13],For:3,LHS:[4,8,12],One:14,RHS:[4,8,11,12],The:[3,4,5,7,14,15,16],Then:[3,16],There:[3,16],These:[0,16],Use:13,abdullah:[8,16],acc:4,accept:4,accord:[11,14],account:15,accuraci:[3,7],acf:3,actual:[4,15],adapt:4,adaptiveexpect:4,add:[3,4],add_new_pwflgr:8,added:[4,5],adding:4,addit:5,address:[3,4],after:[5,10],age:4,aged:4,aggreg:[4,9],ahead:[3,4,8,9,10,11,12,13,16],ahed:16,airlin:5,airpasseng:[1,2],alabama:5,alia:3,all:[3,4,9,11,14,15,16],allmethodensembleft:9,almost:16,alpha:[3,4,7,8,9,13],alpha_cut:[4,11,14],alreadi:5,also:[0,16],ambientai:5,among:[4,10],analysi:3,analytic_tabular_datafram:3,analytical_data_column:3,angela:4,anoth:10,api:[0,4],app:6,append:[4,9,11,14,15],append_complex:14,append_interv:15,append_lh:[8,12],append_log:4,append_model:9,append_rh:[4,8,11,12,13],append_rul:4,append_set:[4,11],append_transform:4,append_vari:11,appendchild:4,appl:[8,14,16],appli:[3,4,11,15],apply_inverse_transform:[4,11],apply_transform:[4,11],approach:[3,14,16],arg:12,argument:[3,4,14],arima:[1,2],arima_model:3,around:4,arrai:[4,5,12,13],artifici:[1,2],ascend:3,aspx:5,assert:15,assign:[4,15],assoc:3,associ:5,ata:3,atmospher:5,atribut:3,attibut:4,attractor:5,autocorrel:3,autom:5,automat:4,auxiliar:4,auxiliari:15,averag:[3,5,15],averageloglikelihood:15,avg:5,axes:12,axi:[3,4,14,15],azim:3,bar:3,base:[3,4,5,8,9,10,11,12,13,14,15,16],base_dataframe_column:3,batch:4,batch_sav:4,batch_siz:10,befor:16,begin:4,being:3,bell:4,bellmf:4,belo:[0,5],below:16,benchmark:[1,2,7],benchmark_method:3,benchmark_methods_paramet:3,benchmark_model:3,bestsplit:14,better:16,between:[3,4,15],bill:4,bin:8,bisect:4,bitcoin:[1,2],bivari:5,black:15,blip:5,blue:4,both:[4,11,14],bound:[4,5,8,9,11,12,14],box:[3,4,16],boxcox:4,boxljungstatist:3,boxpiercestatist:3,brasil:5,brasilia:5,brazil:[0,9],brazilian:[0,9],brier:3,brier_scor:3,bst:[1,2],btc:5,build:[11,12,13,14],build_cdf_qtl:15,build_index:[11,13,14],build_method:3,build_tree_without_ord:4,built:[5,14],buseco:5,busi:5,c_mean:14,calcul:[4,11,12],call:4,camwa:14,can:[3,4,16],cancel:5,capabl:3,capit:5,cartesian:11,cast_dataframe_to_synthet:3,cast_dataframe_to_synthetic_interv:3,cast_dataframe_to_synthetic_point:3,cast_dataframe_to_synthetic_probabilist:3,ccst:5,centroid:[4,13],certain:15,chain:5,chang:[5,14,16],change_target_vari:11,chao:5,chaotic:[1,2],characterist:16,cheap:0,check:[4,5,14,16],check_bound:[4,12,14],check_bounds_index:[4,12],check_data:11,check_ignore_list:3,check_replace_list:3,chen:[1,2,11,13,16],cheng:[1,2,14,16],chia:8,child:4,chissom:[8,16],chiu:14,clear:4,clip_uod:4,clone:[4,11,16],clone_paramet:[4,11],closest:14,cluster:[3,4,11,14],clusteredmvft:11,cmap:4,cmean:[1,2],cmeanspartition:14,cmsft:[2,8],cmvft:[2,8],code:[11,16],coeffici:[3,5],col:4,colab:16,colabor:0,color:[3,4,12,15],colormap:4,column:[4,11],columun:4,com:[5,16],combin:11,common:[1,2,3,6,7,8,9,10,14,15,16],common_process_interval_job:3,common_process_point_job:3,common_process_probabilistic_job:3,common_process_time_job:3,commun:5,compar:[3,4],compare_residu:3,comparemodelsplot:3,comparemodelst:3,complet:5,complex:5,complic:5,compon:5,composit:[1,2,5,11],compress:5,comput:[8,9,14,16],computation:0,condens:3,condit:3,conditional_perturbation_factor:12,conditionalvarianceft:12,conf:[0,1],confer:8,confid:3,configure_lag:[8,12],congress:9,conn:[3,7],connect:[3,7],consid:[4,11,14],const_t:12,constant:5,contain:[3,4,11,16],content:[0,1],context:6,contextu:13,contextualmultiseasonalft:13,contextualseasonalflrg:13,contin:[10,15],continu:[3,5,15],control:[3,5,10],control_method:3,convent:[8,12,13],conventionalflrg:8,conventionalft:[8,11],conventionalnonstationaryflrg:12,copi:4,cost:[14,16],count:[4,15],counter:14,covavg:3,coverag:3,covstd:3,cox:[4,16],creat:[3,4,5,7,9,11,14,15,16],create_benchmark_t:3,create_hyperparam_t:7,create_multivariate_model:6,create_spark_conf:6,create_univariate_model:6,criteria:3,cross:[4,15],crossentropi:15,crp:3,crps1avg:3,crps1std:3,crps2avg:3,crps2std:3,crps_distr:3,crps_interv:3,crpsavg:3,crpsstd:3,csv:[3,5],cumul:15,current:[3,5],current_milli_tim:4,cut:7,cvft:[2,8],dado:[4,5,14],dai:5,daili:5,data:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16],data_column:3,data_field:13,data_point:11,databas:[3,7],datafram:[3,4,5,11,13],dataframeseasonalindex:13,datapoint:3,dataset:[1,2,3,4,7],date:[3,13],date_field:13,date_part:13,datepart:13,datetim:13,datetimeseasonalindex:13,david:4,day_of_month:13,day_of_week:13,day_of_year:13,dealer:5,dec:14,decemb:5,decis:3,decompress:5,defin:[3,7],defuzzyf:16,defuzzyfi:[11,14],deg:12,delet:4,deltadist:14,demand:11,demo:16,densiti:[3,4,15],departa:0,depend:[3,4,11,14,16],deri:[8,16],design:[3,4,7,11,13,14],determin:3,determinist:[5,14],develop:[0,16],deviat:3,dict:[3,4],dictionari:[3,4],differ:3,differenti:[4,5,15,16],differential_offset:15,diffus:[8,16],dill:4,dimension:5,directli:[4,16],discours:[3,4,9,11,12,13,14,15,16],discret:15,disk:[4,14],dispi:[1,2,3,4],displac:12,displai:3,distanc:[3,14],distribut:[1,2,3,4,5,8,9,11,15],distributed_predict:6,distributed_train:6,diverg:15,dji:5,dkl:15,dnf:5,document:0,doi10:8,doi:[0,3,5,14],dollar:[8,16],don:5,dow:5,dowjon:[1,2],download:5,draw_sets_on_axi:4,due:[4,10],dure:[3,4],dynam:5,each:[3,4,5,11,16],easi:[0,4],easier:4,edu:5,edward:5,efendi:[8,16],effect:[14,16],effici:4,electr:[0,8,16],eletr:5,elev:3,empir:[14,15],empiricalloglikelihood:15,emul:5,enayatifar:[8,16],end:12,endogen:11,energi:[8,16],engin:0,enrol:[1,2,8,13,16],ensembl:[1,2,8,10],ensembleft:[9,10],entir:4,entropi:[1,2,15,16],entropypartition:[14,16],enumerate2:4,environ:4,eps_inf:14,eps_sup:14,equal:[3,4,8,9,10,11,12,13,16],equat:5,error:3,espaciai:5,esrl:5,estim:[3,14,15],etc:16,eth:5,ethereum:[1,2],eur:[1,2],eurgbp:5,eurusd:5,even:[13,14],evolutionari:[1,2],exact:4,exampl:0,except:4,exchang:[5,8,16],exclud:3,execut:3,exist:5,expect:[4,8,15],expected_valu:15,experi:3,expert:[0,8,16],explain:[4,8],explanatory_vari:6,exploit:0,explore_partition:14,exponenti:[8,12,16],exponentiali:8,exponentialyweightedflrg:8,exponentialyweightedft:8,express:3,extens:11,extern:3,externalforecast:3,externalmodel:3,extract:[3,5,13,14],extract_measur:3,extractor:[13,14],facil:[3,4,5,7,14],fall:3,fals:[3,4,5,8,9,11,12,14],fcm:[1,2],fcmpartition:[14,16],feder:0,fetch:4,field:[5,13],fig:[4,12],figur:4,file:[3,4,5,12,14],file_analyt:3,file_path:4,file_synthet:3,filenam:[3,4,5],filenem:[3,7],filesystem:4,fill:4,filter:3,financ:5,find:[4,13,14],find_best:3,find_g:4,find_gt:4,find_l:4,find_lt:4,finner:3,first:[3,4,8,12,13],fit:[3,4,8,9,10,11,12,13],five:4,flag:4,flashquot:5,flat:4,flow:5,flr:[1,2,8,12,13],flr_membership_matrix:8,flrg:[1,2,8,13],flrg_lhs_conditional_prob:8,flrg_lhs_conditional_probability_fuzzyfi:8,flrg_lhs_unconditional_prob:8,flrg_rhs_conditional_prob:8,flrgtree:4,flrgtreenod:4,foreast:3,forecast:[3,4,8,9,10,11,12,13,14,16],forecast_ahead:[3,4,8,10,11,13],forecast_ahead_distribut:[3,4,8,9,11],forecast_ahead_interv:[3,4,8,9,11],forecast_ahead_multivari:[4,11],forecast_distribut:[3,4,8,9,11],forecast_distribution_from_distribut:8,forecast_interv:[3,4,8,9,11,12],forecast_multivari:[4,11],forex:5,fork:0,format:[3,7],format_data:11,format_experiment_t:3,forward:4,found:[4,16],frederico:[0,8],frequenc:15,friedman:3,from:[0,3,4,5,8,11,13,14,15,16],from_point:15,fset:[8,11,12],fts:[1,2,3,8,9,10,11,12,13],fts_method:3,fuzz:8,fuzzi:[2,4,8,9,11,12,13,14],fuzzif:[14,16],fuzzifi:[4,12],fuzzy_cmean:14,fuzzy_dist:14,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,11,14,16],fuzzyfi:[4,11,14],fuzzyfy_inst:[4,11],fuzzyfy_instance_clust:11,fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:12,fuzzyset:[1,2,8,11,12,13],gadelha:[0,8],gani:[8,16],garibaldi:12,gaussian:[4,5],gaussian_proc:3,gaussianproc:[1,2],gaussmf:4,gbp:[1,2],gbpusd:5,gcos_wgsp:5,gener:[1,2,4,16],generate_flr:11,generate_flrg2:8,generate_flrg:[8,11,12,13],generate_flrg_fuzzyfi:8,generate_gaussian_linear:5,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_lhs_flr:11,generate_lhs_flrg:8,generate_lhs_flrg_fuzzyfi:8,generate_linear_periodic_gaussian:5,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_sinoidal_periodic_gaussian:5,generate_uniform_linear:5,gerai:0,get:[3,4,5],get_benchmark_interval_method:3,get_benchmark_point_method:3,get_benchmark_probabilistic_method:3,get_clustered_partition:6,get_data:[5,13],get_data_by_season:13,get_datafram:5,get_dataframe_from_bd:3,get_distribution_ahead_statist:3,get_distribution_interquantil:9,get_distribution_statist:3,get_fuzzyset:4,get_index:13,get_index_by_season:13,get_interv:9,get_interval_ahead_statist:3,get_interval_method:3,get_interval_statist:3,get_kei:[4,8,12,13],get_low:[4,8,11,12],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,8,11,12],get_midpoint:[4,8,11,12,13],get_models_forecast:9,get_nam:14,get_partition:6,get_point:9,get_point_ahead_statist:3,get_point_method:3,get_point_multivariate_method:3,get_point_statist:3,get_polynomial_perturb:12,get_probabilistic_method:3,get_season_by_index:13,get_season_of_data:13,get_sequence_membership:8,get_sets_from_both_fuzzyf:8,get_uod:[4,9],get_upp:[4,8,11,12],get_vari:6,getchildren:4,getstr:4,git:16,github:[0,16],given:[3,4,10,11,12,14,15],glass:[1,2],good:[3,16],googl:16,gov:5,gpr:3,grant_bound:4,granular:[2,8,13],granularwmvft:11,greater:[4,5],grid:[1,2,3,8,13],gridclust:11,gridpartition:[3,14,16],gridsearch:[1,2],group:[3,4,8,11,12,13],h_0:3,h_1:3,half:13,handl:[4,8],hard:4,harmoni:[8,16],head:0,height:14,henon:[1,2],here:16,heteroskedast:12,high:[3,8,11,12],highorderflrg:8,highorderft:[8,12],highordernonstationaryflrg:12,highordernonstationaryft:12,histogram:15,histori:5,hoang:8,hoc:3,hoft:[1,2,12],homogen:9,honsft:[2,8],horizon:[3,4],horizont:[0,5],hossein:8,hour:[3,13],hour_of_month:13,hour_of_week:13,hour_of_year:13,hourli:5,http:[0,5,16],huarng:[1,2,16],huarngpartition:[14,16],human:0,hwang:[1,2],hybrid:[8,16],hyndman:5,hyperparam:[1,2],hyperparamet:7,identif:[13,14],identifi:[3,4,7,8,12,13],ieee:[8,12],ifmg:0,ifnmg:0,ift:[1,2],ignor:[3,13],imag:[4,14],imax:14,implement:[4,13,16],improv:[8,14,16],improvedweightedflrg:8,improvedweightedft:8,inc:[3,4],increas:11,increment:[1,2,3,5,8,11,15],incremental_gaussian:5,incremental_search:11,incrementalensembl:[2,8],incrementalensembleft:10,incrementalgridclust:11,ind:13,indentifi:[3,7],index:[3,4,5,8,9,10,11,13,14],index_field:13,index_season:13,index_seri:5,indexedflr:4,indic:[3,4,5],individu:4,inequ:3,infer:[3,5],infil:3,inform:[3,14,15],informationgain:14,initi:[4,5],initial_valu:5,inmet:[1,2],innov:[8,16],inp:5,input:[4,8,10,11,12,14,15],insert:[3,4,5,7],insert_benchmark:3,insert_hyperparam:7,insert_right:4,insid:[3,4,13,14,15],inst:[4,12],instal:0,instanc:[5,11,12,13,14,16],instead:4,instituit:0,institut:0,instituto:5,integ:[3,4,10],integr:5,intel:[8,16],intellig:[8,9,14],intend:0,interfer:5,intern:[8,10],internet:5,interpol:4,interpret:4,interv:[3,4,8,9,11,12,14,15,16],interval_dataframe_analytic_column:3,interval_dataframe_synthetic_column:3,interval_heurist:8,interval_quantil:8,interval_to_interv:3,intervalar:16,intervalft:8,introduc:16,introspect:4,invers:[4,16],ipynb:16,ismail:[8,16],ismailefendi:[1,2],isol:14,item:4,itemgett:4,iter:[4,5],its:[5,8,10,11,13,14,16],ixic:5,janeiro:9,januari:5,jaroszewski:12,javedani:8,jeng:8,job:3,johnson:11,jonathan:12,jone:[4,5],journal:[3,5,14],jstor:3,jun:[14,16],jupyt:16,kde:[1,2],kei:[3,4],kernel:15,kernel_funct:15,kernelsmooth:15,knearestneighbor:3,knn:[1,2],known:[4,9,14],kullback:15,kullbackleiblerdiverg:15,kwarg:[3,4,5,6,8,9,10,11,12,13,14,15],lab:0,label:[3,4],lag:[3,4,5,7,10,16],lambda:4,last:4,later:16,layman:0,lcolor:4,learn:10,least:3,lee:8,left:4,legend:[3,4],leibler:15,len_tot:4,length:[3,4,5,8,9,10,11,12,13,14,16],less:4,lett:5,level:[3,4],lgd:4,lhs_conditional_prob:8,lhs_conditional_probability_fuzzyfi:8,lhs_mv:8,librari:[2,5],like:[4,16],likelihood:15,lin:14,line:4,linear:[5,12],linearmodel:3,linearseasonalindex:13,linewidth:[3,4],linspac:5,list:[3,4,5,8,9,10,11,12,13,14,15,16],ljung:3,ljung_box_test:3,lo_param:3,load:[4,5,8,16],load_env:4,load_obj:4,local:5,locat:[4,5],log:[4,15],logarithm:3,logarithm_scor:3,logic:[4,8,11,12,13],logist:[4,5],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:5,loss:3,lower:[4,5,8,9,11,12,14],lower_set:14,mackei:[1,2],mackey_glass:5,mai:5,main:16,make:3,malaysia:[1,2,8,16],mani:16,manual:14,map:[4,5],mape:3,mape_interv:3,marcin:12,market:5,mask:13,match:4,math:[5,14],mathemat:5,matplotlib:[4,14],max:4,max_inc:5,max_ini:5,max_lag:[3,4,8,9,10,11,12,13],maximum:[4,5,9,11,14],mean:[3,4,5],measur:[1,2,7],mech:[8,16],median:4,membership:[1,2,7,8,11,12,14,16],memori:4,merg:4,meta:[9,10,11],meteorologia:5,method:[0,3,4,5,7,8,9,10,11,12,13,14,16],metric:3,mft:3,midpoint:[4,8,11,12],min:[4,15],min_inc:5,min_ini:5,mina:0,mind:0,ming:8,minim:[3,4,8,9,10,11,12,13,14],minimum:[4,5,9,16],minut:13,minute_of_dai:13,minute_of_month:13,minute_of_week:13,minute_of_year:13,mode:[4,11,14],model:[0,1,2,3,4,5,6,7,14,16],modelo:3,models_fo:3,models_ho:3,modul:[0,1,16],monash:5,month:13,monthli:[3,5],more:16,most:[10,16],move:3,msft:[2,8],mu_inc:5,mu_ini:5,mu_max:5,mu_min:5,much:4,multi:[3,4,8,9,10,11,13],multiseason:[2,8],multiseasonalft:13,multivari:[1,2,3,4,5,8],multivariate_sliding_window_benchmarks2:3,multivariatefuzzyset:11,multivariatepartition:11,musikasuwan:12,mv_run_interval2:3,mv_run_point2:3,mv_run_probabilistic2:3,mvft:[2,8],nacion:5,naiv:[1,2],name:[3,4,5,7,9,11,12,13,14],nasdaq:[1,2],nation:5,nativ:[4,13],natur:5,nbin:[4,8],nbsp:0,ndata:[3,4,8,11,12],nearest:[11,13,14],necessari:[4,10],neighbor:3,next:[4,16],nice:4,noaa:5,node:[3,4],nois:5,non:[3,4,5,12,13,16],none:[3,4,5,11,12,13,14,15],nonperiod:5,nonstationari:[1,2,8],nonstationaryflrg:12,nonstationaryft:12,norm:8,normal:16,north:0,norton:5,notebook:16,noth:16,nov:[14,16],now:4,npart:[12,14],nsft:[2,3,8],num:5,num_batch:4,num_season:13,number:[3,4,5,7,8,9,10,11,13,14,16],numer:16,numpi:[4,5],obj:[3,4,14],object:[3,4,5,8,9,11,13,14,15],objectsist:3,occur:4,occurr:4,offset:[4,10],old:4,older:4,oldest:4,onc:4,one:[3,4,5,7,8,9,10,11,12,13,15,16],ones:4,onli:[4,11,14],onlin:10,only_lin:12,open:[3,7],open_benchmark_db:3,open_hyperparam_db:7,oper:[4,16],operation_matrix:8,optim:7,option:[3,4,14],order:[3,4,7,8,9,10,11,12,13,16],ordered_set:[4,12],ordin:4,org:[0,3,5],origin:[3,4,16],oscil:5,other:[3,4,9,10,11],otherwis:3,out:16,outfil:3,outlier:5,output:[14,16],outsid:14,over:4,overlap:[11,13,14,16],own:11,p500:5,packag:[0,1],page:0,pair:[3,5],panda:[3,4,5,11,13],par1:12,par2:12,parallel_util:[1,2],param:[3,4,5,11,12,13],paramet:[3,4,5,6,7,8,9,10,11,12,13,14,15,16],parametr:16,part:[6,12],partit:[3,4,7,9,11,12,13,14,16],partition:[1,2,3,4,7,8,9,16],partition_funct:[4,8],partitioner_method:3,partitioners_method:3,partitioners_model:3,pass:4,passeng:5,path:[3,4,14],pattern:4,pct:12,pdf:15,percent:3,percentag:3,percentu:[3,4],perform:[3,7,11,12,13,14,16],perform_loc:12,perform_width:12,period:[5,12],periodic_gaussian:5,persist:4,persist_env:4,persist_obj:4,person:[4,5],pertub:12,perturb:[2,8],perturbate_paramet:12,perturbation_factor:12,perturbation_factors__old:12,pesquisa:5,pftsexploreorderandpartit:3,php:5,phy:[5,8,16],physiolog:5,pictur:[3,4],pierc:3,pinbal:3,pinball_mean:3,pip:16,plambda:4,plot:[3,4,13,14,15],plot_compared_intervals_ahead:4,plot_compared_seri:3,plot_dataframe_interv:3,plot_dataframe_interval_pinbal:3,plot_dataframe_point:3,plot_dataframe_probabilist:3,plot_density_rectang:4,plot_distribut:4,plot_distribution2:4,plot_distribution_til:4,plot_interv:4,plot_interval2:4,plot_partition:14,plot_point:3,plot_probability_distribut:4,plot_residuals_by_model:3,plot_rul:4,plot_set:[12,14],plot_sets_condit:12,plotcompar:3,plotforecast:3,pmf:[4,14],point:[3,4,8,9,10,11,12,13,14,15,16],point_dataframe_analytic_column:3,point_dataframe_synthetic_column:3,point_expected_valu:8,point_heurist:8,point_to_interv:3,poit:4,poly_width:12,polynomi:12,polynomialnonstationarypartition:12,poor:5,por:3,posit:[4,13],post:[3,4],post_hoc:3,post_hoc_test:3,posterior:3,postprocess:[4,16],power:[4,8,16],pprint:4,pre:4,prebuilt:3,predict:[3,4,8,9,10,11,12,16],preprocess:[4,11,13,16],previou:5,previous_dist:8,primari:3,primit:[13,14],print:3,print_distribution_statist:3,print_interval_statist:3,print_point_statist:3,probabil:3,probabilist:[1,2,3,4,8,9,11,16],probabilistic_dataframe_analytic_column:3,probabilistic_dataframe_synthetic_column:3,probabilisticweightedflrg:8,probabilisticweightedft:8,probabilitydist:4,probabilitydistribut:[1,2,3,4,8,9,11],probabl:[3,4,8,9,11,15],problem:8,procedur:[3,4],process:[3,4,5],process_common_data2:3,process_common_data:3,process_interval_job:3,process_interval_jobs2:3,process_point_job:3,process_point_jobs2:3,process_probabilistic_job:3,process_probabilistic_jobs2:3,product:[5,8,11,16],product_dict:11,prof:0,progress:3,project:[14,16],propos:16,provid:[0,4,9,16],prune:11,psd:5,pseudo:15,pseudologlikelihood:15,pwflrg:8,pwflrg_lhs_memberhip_fuzzyfi:8,pwft:[1,2],python:[2,16],q05:3,q25:3,q75:3,q95:3,quantil:[3,4,9,15],quantile_regress:3,quantileregress:3,quantreg:[1,2],quarter:13,queri:3,quick:0,quot:5,quotat:5,rais:4,random:5,random_walk:5,rang:[3,16],rank:3,rate:[8,16],ration:3,read:[3,5],readabl:0,real:[4,16],recent:[10,16],record:4,recurr:[4,5],red:[3,4],reference_data:4,refin:[8,16],regress:3,relat:15,relationship:[4,8,11,12,13],remov:4,ren:8,render:5,replac:3,repo:16,repr:4,repres:[3,4,8,9,11,15],represent:16,res:3,research:[0,16],reset:4,reset_calculated_valu:4,residu:3,residualanalysi:[1,2],resolut:[3,4],respect:15,respons:13,result:[3,4,7,13,14],retrain:10,revers:4,review:[3,16],rhs_conditional_prob:8,rhs_unconditional_prob:8,right:4,ringgit:[8,16],rio:9,rmse:3,rmse_interv:3,rmseavg:3,rmsestd:3,rng:12,robert:5,roger:4,roi:4,root:3,rossler:[1,2],round:14,row:4,royal:3,rule:[3,4,11,16],rules_by_axi:4,run:[3,5],run_interv:3,run_interval2:3,run_point2:3,run_point:3,run_probabilist:3,run_probabilistic2:3,sadaei:[1,2,16],salang:12,same:[3,4,9],sampl:[3,4,5,8,16],sampler:9,save:[3,4,12,14],save_best:3,save_dataframe_interv:3,save_dataframe_point:3,save_dataframe_probabilist:3,save_model:4,scalar:15,scale:[3,4,16],scale_down:12,scale_param:3,scale_up:12,scan:4,scheme:[3,7,16],scienc:5,scientist:0,score:3,search:[0,4,8,11,13,14,16],season:[1,2,3,4,8,9,16],seasonalensembleft:9,seasonalflrg:13,seasonalft:13,seasonalindex:[2,8],second_of_dai:13,second_of_hour:13,second_of_minut:13,secur:5,selecaosimples_menorrms:3,select:5,sep:5,separ:5,sequenc:4,seri:[1,2,3,4,8,9,10,11,12,13,14],set:[3,4,7,8,9,11,12,13,14,15,16],set_data:13,set_lh:11,set_ord:4,set_rh:11,set_target_vari:11,set_transform:9,seth:11,sever:[3,4,5,9,11,13,14],severiano:8,sft:[2,8],shape:4,share:9,share_paramet:6,shared_partition:6,sharp:3,sharpavg:3,sharpstd:3,show:[4,14],show_and_save_imag:4,shyi:8,sigma:5,sigma_inc:5,sigma_ini:5,sigma_max:5,sigma_min:5,sigmf:4,sigmoid:4,signal:5,signalemul:5,signific:3,silva:[0,8,9],simpl:[0,1,2,5,13],simple_synthetic_datafram:3,simpleensembleft:9,simplenonstationary_gridpartitioner_build:12,simplenonstationarypartition:12,simplepartition:14,simpler:4,simplesearch_rms:3,singl:[4,13,14],single_plot_residu:3,singleton:[1,2,4],singletonpartition:14,sinoid:5,sistema:5,sixth:13,size:[3,4,10,12,14],skip:[4,10],sklearn:3,slave_forecast_multivari:6,slave_forecast_univari:6,slave_train_multivari:6,slave_train_univari:6,slice:4,slide:[3,4],sliding_window:4,sliding_window_benchmark:3,sliding_window_benchmarks2:3,smape:3,smith:4,smooth:[4,8,16],social:[14,16],societi:3,solar:8,sonda:[1,2],song:[1,2,13,16],sort:4,sort_ascend:3,sort_column:3,sortedcollect:[1,2],sourc:[4,5],sp500:5,space:4,spark:[1,2],specif:[3,4,8,9,10,11,12,13],split:[3,4,14],splitabov:14,splitbelow:14,splite:16,sql:3,sqlite3:[3,7],sqlite:[3,7],squar:3,ssci:8,stabl:3,standard:[3,5,16],start:[0,3,4,5,8,9,10,11,12,13],start_at:[3,4,8,9,10,11,13],stat:[3,8,16],station:5,stationari:12,stationary_gaussian:5,statist:[0,3],statsmodel:3,std:3,step:[3,4,8,9,10,11,12,13,16],stephen:14,steps_ahead:[3,4],stochast:5,stock:5,store:[3,4,7],strang:5,string:14,strip_datepart:13,structur:[4,13,14],student:0,style:4,subclust:[1,2],subclustpartition:14,submodul:[0,1],subpackag:[0,1],subtract:14,suitabl:0,sum:8,sunspot:[1,2],superset:4,support:4,symbol:5,symmetr:3,symposium:8,synchron:[4,10],synthesi:3,synthet:[1,2,3],syst:[8,13,14,16],system:[5,8,12,14],tabl:[3,7],tabular_dataframe_column:3,tag:[3,7],taiex:[1,2,8,16],taiwan:5,take:16,tam:[3,4,12,14,15],target:3,target_vari:[4,6],tau:[3,5,15],technol:[14,16],tempeatur:5,tempor:[4,13,16],term:[3,4,8,16],test:[1,2,4,10,16],test_data:3,test_mean_equ:3,than:[4,5,16],thei:4,theil:3,theilsinequ:3,theoret:3,theori:16,thi:[0,4,5,8,10,11,12,13,14,15,16],third:13,thoma:4,those:4,thres1:14,thres2:14,threshold:14,through:5,time:[1,2,3,4,8,9,10,11,12,13,14],time_from:4,time_to:4,timegridpartition:13,times2:3,timeseri:5,timevari:[2,8],titl:[3,14,15],tool:[0,16],total:[4,5],tradit:8,train:[3,4,8,9,10,11,12,13,14],train_data:[3,9],train_individual_model:9,train_test_tim:3,transact:12,transform:[1,2,3,7,11,12,13,14,16],transit:[4,16],translat:16,trapezoid:[4,14,16],trapmf:4,tree:[1,2],trend:[8,16],trendweightedflrg:8,trendweightedft:8,triangular:4,trigger:4,trimf:4,tsa:3,tsdl:5,tupl:[3,4,7,11,14],two:5,twse:5,type:[3,4,5,6,11,13,14,15,16],typeonlegend:[3,4],uavg:3,ufmg:0,under:4,unified_scaled_interv:3,unified_scaled_interval_pinbal:3,unified_scaled_point:3,unified_scaled_probabilist:3,uniform:5,uniqu:[4,8,12,13],uniquefilenam:4,unit:13,univari:5,univers:[0,3,4,5,9,11,12,13,14,15,16],unpack_arg:12,uod:[3,4,7,8,9,14],up_param:3,update_model:8,update_uod:9,updateuod:[4,11],upper:[4,5,8,9,11,12,14],upper_set:14,url:[0,3,5,6],urlhttp:3,usa:5,usag:0,usd:[1,2],use:[0,4,11],used:[3,4,7,8,14,16],user:[3,7],using:[4,8,10,14,16],ustatist:3,ustd:3,usual:[4,16],util:[1,2,8],val:14,valid:4,valu:[3,4,5,7,8,9,10,11,12,13,14,15,16],valueerror:4,variabl:[2,4,6,8],varianc:[4,5],variant:10,variat:[5,9],vec:14,vector:[4,11,14],veri:[5,8],verif:3,verifi:14,visualize_distribut:8,vmax:5,vmin:5,vol:[8,13,14,16],walk:5,want:0,weather:3,weight:[5,8,11,12,16],weightedflrg:[8,11],weightedft:8,weightedhighorderflrg:8,weightedhighorderft:8,weightedintervalft:8,weightedmvft:11,weightednonstationaryflrg:12,weightednonstationaryft:12,were:[11,13,14],when:[4,14],where:[3,4,8,9,10,11,13],which:[3,4,7,11,16],white_nois:5,whose:[0,10],width:[4,14],window:[3,4,10],window_index:12,window_kei:3,window_length:10,window_s:12,windows:[3,4],winkler:3,winkler_mean:3,winkler_scor:3,without:4,wmvft:[2,8],word:[3,7],work:[4,11,13,14],wrap:[3,9,10],www:[3,5],xiii:9,yahoo:5,year:13,yearli:5,yeh:[14,16],you:4,young:4,younger:4,youngest:4,zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.data package","pyFTS.distributed package","pyFTS.hyperparam package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.incremental package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{FTS:16,airpasseng:5,arima:3,artifici:5,benchmark:3,bitcoin:5,bst:3,chaotic:5,chen:8,cheng:8,cmean:14,cmsft:13,cmvft:11,common:[4,5,11,12,13],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],cvft:12,data:5,dataset:5,dispi:6,distribut:6,dowjon:5,enrol:5,ensembl:9,entropi:14,ethereum:5,eur:5,evolutionari:7,exampl:16,fcm:14,flr:[4,11],flrg:[4,11,12],fts:4,fuzzi:[0,16],fuzzyset:4,gaussianproc:3,gbp:5,gener:5,glass:5,granular:11,grid:[11,14],gridsearch:7,henon:5,hoft:8,honsft:12,how:[0,16],huarng:14,hwang:8,hyperparam:7,ift:8,increment:10,incrementalensembl:10,index:0,inmet:5,instal:16,ismailefendi:8,kde:15,knn:3,librari:0,logistic_map:5,lorentz:5,mackei:5,malaysia:5,measur:3,membership:4,model:[8,9,10,11,12,13],modul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],msft:13,multiseason:9,multivari:11,mvft:11,naiv:3,nasdaq:5,nonstationari:12,nsft:12,packag:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],parallel_util:14,partition:[11,12,13,14],perturb:12,probabilist:15,probabilitydistribut:15,pwft:8,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],python:0,quantreg:3,quick:16,refer:[0,16],residualanalysi:3,rossler:5,sadaei:8,season:13,seasonalindex:13,seri:[0,5,16],sft:13,simpl:14,singleton:14,sonda:5,song:8,sortedcollect:4,spark:6,start:16,subclust:14,submodul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],subpackag:[2,8],sunspot:5,synthet:5,taiex:5,test:3,time:[0,5,16],timevari:10,transform:4,tree:4,usag:16,usd:5,util:[3,4,7,12,14],variabl:11,what:[0,16],wmvft:11}})