pyFTS.probabilistic package¶
Module contents¶
Probability Distribution objects
Submodules¶
pyFTS.probabilistic.ProbabilityDistribution module¶
-
class
pyFTS.probabilistic.ProbabilityDistribution.
ProbabilityDistribution
(type='KDE', **kwargs)[source]¶ Bases:
object
Represents a discrete or continous probability distribution If type is histogram, the PDF is discrete If type is KDE the PDF is continuous
-
append
(values)[source]¶ Increment the frequency count for the values
Parameters: values – A list of values to account the frequency
-
append_interval
(intervals)[source]¶ Increment the frequency count for all values inside an interval
Parameters: intervals – A list of intervals do increment the frequency
-
averageloglikelihood
(data)[source]¶ Average log likelihood of the probability distribution with respect to data
Parameters: data – Returns:
-
bins
= None¶ Number of bins on a discrete PDF
-
crossentropy
(q)[source]¶ Cross entropy between the actual probability distribution and the informed one, H(P,Q) = - ∑ P(x) log ( Q(x) )
Parameters: q – a probabilistic.ProbabilityDistribution object Returns: Cross entropy between this probability distribution and the given distribution
-
cumulative
(values)[source]¶ Return the cumulative probability densities for the input values, such that F(x) = P(X <= x)
Parameters: values – A list of input values Returns: The cumulative probability densities for the input values
-
density
(values)[source]¶ Return the probability densities for the input values
Parameters: values – List of values to return the densities Returns: List of probability densities for the input values
-
differential_offset
(value)[source]¶ Auxiliary function for probability distributions of differentiated data
Parameters: value – Returns:
-
empiricalloglikelihood
()[source]¶ Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )
Returns:
-
entropy
()[source]¶ Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )
:return:the entropy of the probability distribution
-
expected_value
()[source]¶ Return the expected value of the distribution, as E[X] = ∑ x * P(x)
Returns: The expected value of the distribution
-
kullbackleiblerdivergence
(q)[source]¶ Kullback-Leibler divergence between the actual probability distribution and the informed one. DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )
Parameters: q – a probabilistic.ProbabilityDistribution object Returns: Kullback-Leibler divergence
-
labels
= None¶ Bins labels on a discrete PDF
-
pseudologlikelihood
(data)[source]¶ Pseudo log likelihood of the probability distribution with respect to data
Parameters: data – Returns:
-
quantile
(values)[source]¶ Return the Universe of Discourse values in relation to the quantile input values, such that Q(tau) = min( {x | F(x) >= tau })
Parameters: values – input values Returns: The list of the quantile values for the input values
-
set
(value, density)[source]¶ Assert a probability ‘density’ for a certain value ‘value’, such that P(value) = density
Parameters: - value – A value in the universe of discourse from the distribution
- density – The probability density to assign to the value
-
type
= None¶ If type is histogram, the PDF is discrete If type is KDE the PDF is continuous
-
uod
= None¶ Universe of discourse
-