import numpy as np import math import random as rnd import functools, operator from pyFTS.common import FuzzySet, Membership, Transformations # K. H. Huarng, “Effective lengths of intervals to improve forecasting in fuzzy time series,” # Fuzzy Sets Syst., vol. 123, no. 3, pp. 387–394, Nov. 2001. from pyFTS.partitioners import partitioner class HuarngPartitioner(partitioner.Partitioner): def __init__(self, data,npart,func = Membership.trimf, transformation=None): super(HuarngPartitioner, self).__init__("Huarng", data, npart, func=func, transformation=transformation) def build(self, data): diff = Transformations.Differential(1) data2 = diff.apply(data) davg = np.abs( np.mean(data2) / 2 ) if davg <= 1.0: base = 0.1 elif 1 < davg <= 10: base = 1.0 elif 10 < davg <= 100: base = 10 else: base = 100 sets = [] dlen = self.max - self.min npart = math.ceil(dlen / base) partition = math.ceil(self.min) for c in range(npart): if self.membership_function == Membership.trimf: sets.append( FuzzySet.FuzzySet(self.prefix + str(c), Membership.trimf, [partition - base, partition, partition + base], partition)) elif self.membership_function == Membership.gaussmf: sets.append(FuzzySet.FuzzySet(self.prefix + str(c), Membership.gaussmf, [partition, base/2], partition)) elif self.membership_function == Membership.trapmf: sets.append(FuzzySet.FuzzySet(self.prefix + str(c), Membership.trapmf, [partition - base, partition - (base/2), partition + (base / 2), partition + base], partition)) partition += base return sets