pyFTS.models.nonstationary package¶
Submodules¶
pyFTS.models.nonstationary.common module¶
Non Stationary Fuzzy Sets
GARIBALDI, Jonathan M.; JAROSZEWSKI, Marcin; MUSIKASUWAN, Salang. Nonstationary fuzzy sets. IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.
-
class
pyFTS.models.nonstationary.common.
FuzzySet
(name, mf, parameters, **kwargs)¶ Bases:
pyFTS.common.FuzzySet.FuzzySet
Non Stationary Fuzzy Sets
-
get_lower
(t)¶
-
get_midpoint
(t)¶
-
get_upper
(t)¶
-
membership
(x, t)¶ Calculate the membership value of a given input
Parameters: - x – input value
- t – time displacement or perturbation parameters
Returns: membership value of x at this fuzzy set
-
perform_location
(t, param)¶
-
perform_width
(t, param)¶
-
perturbate_parameters
(t)¶
-
-
pyFTS.models.nonstationary.common.
check_bounds
(data, partitioner, t)¶
-
pyFTS.models.nonstationary.common.
check_bounds_index
(data, partitioner, t)¶
-
pyFTS.models.nonstationary.common.
fuzzify
(inst, t, fuzzySets)¶ Calculate the membership values for a data point given nonstationary fuzzy sets
Parameters: - inst – data points
- t – time displacement of the instance
- fuzzySets – list of fuzzy sets
Returns: array of membership values
-
pyFTS.models.nonstationary.common.
fuzzySeries
(data, fuzzySets, ordered_sets, window_size=1, method='fuzzy', const_t=None)¶
-
pyFTS.models.nonstationary.common.
window_index
(t, window_size)¶
pyFTS.models.nonstationary.cvfts module¶
-
class
pyFTS.models.nonstationary.cvfts.
ConditionalVarianceFTS
(**kwargs)¶ Bases:
pyFTS.models.hofts.HighOrderFTS
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_interval
(ndata, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
generate_flrg
(flrs, **kwargs)¶
-
perturbation_factors
(data, **kwargs)¶
-
perturbation_factors__old
(data)¶
-
train
(ndata, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
class
pyFTS.models.nonstationary.cvfts.
HighOrderNonstationaryFLRG
(order, **kwargs)¶ Bases:
pyFTS.models.hofts.HighOrderFTS
Conventional High Order Fuzzy Logical Relationship Group
-
append_lhs
(c)¶
-
append_rhs
(c, **kwargs)¶
-
pyFTS.models.nonstationary.flrg module¶
-
class
pyFTS.models.nonstationary.flrg.
NonStationaryFLRG
(LHS, **kwargs)¶ Bases:
pyFTS.common.flrg.FLRG
-
get_key
()¶ Returns a unique identifier for this FLRG
-
get_lower
(*args)¶ Returns the lower bound value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: lower bound value
-
get_membership
(data, *args)¶ Returns the membership value of the FLRG for the input data
Parameters: - data – input data
- sets – fuzzy sets
Returns: the membership value
-
get_midpoint
(*args)¶ Returns the midpoint value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: the midpoint value
-
get_upper
(*args)¶ Returns the upper bound value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: upper bound value
-
unpack_args
(*args)¶
-
pyFTS.models.nonstationary.honsfts module¶
-
class
pyFTS.models.nonstationary.honsfts.
HighOrderNonStationaryFLRG
(order, **kwargs)¶ Bases:
pyFTS.models.nonstationary.flrg.NonStationaryFLRG
First Order NonStationary Fuzzy Logical Relationship Group
-
append_lhs
(c)¶
-
append_rhs
(c, **kwargs)¶
-
-
class
pyFTS.models.nonstationary.honsfts.
HighOrderNonStationaryFTS
(name, **kwargs)¶ Bases:
pyFTS.models.hofts.HighOrderFTS
NonStationaryFTS Fuzzy Time Series
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_interval
(ndata, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
generate_flrg
(data, **kwargs)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.nonstationary.nsfts module¶
-
class
pyFTS.models.nonstationary.nsfts.
ConventionalNonStationaryFLRG
(LHS, **kwargs)¶ Bases:
pyFTS.models.nonstationary.flrg.NonStationaryFLRG
First Order NonStationary Fuzzy Logical Relationship Group
-
append_rhs
(c, **kwargs)¶
-
get_key
()¶ Returns a unique identifier for this FLRG
-
-
class
pyFTS.models.nonstationary.nsfts.
NonStationaryFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
NonStationaryFTS Fuzzy Time Series
-
conditional_perturbation_factors
(data, **kwargs)¶
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_interval
(ndata, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
generate_flrg
(flrs, **kwargs)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.nonstationary.partitioners module¶
-
class
pyFTS.models.nonstationary.partitioners.
PolynomialNonStationaryPartitioner
(data, part, **kwargs)¶ Bases:
pyFTS.partitioners.partitioner.Partitioner
Non Stationary Universe of Discourse Partitioner
-
build
(data)¶ Perform the partitioning of the Universe of Discourse
Parameters: data – training data Returns:
-
get_polynomial_perturbations
(data, **kwargs)¶
-
poly_width
(par1, par2, rng, deg)¶
-
scale_down
(x, pct)¶
-
scale_up
(x, pct)¶
-
-
class
pyFTS.models.nonstationary.partitioners.
SimpleNonStationaryPartitioner
(data, part, **kwargs)¶ Bases:
pyFTS.partitioners.partitioner.Partitioner
Non Stationary Universe of Discourse Partitioner
-
build
(data)¶ Perform the partitioning of the Universe of Discourse
Parameters: data – training data Returns:
-
-
pyFTS.models.nonstationary.partitioners.
simplenonstationary_gridpartitioner_builder
(data, npart, transformation)¶
pyFTS.models.nonstationary.perturbation module¶
Pertubation functions for Non Stationary Fuzzy Sets
-
pyFTS.models.nonstationary.perturbation.
exponential
(x, parameters)¶
-
pyFTS.models.nonstationary.perturbation.
linear
(x, parameters)¶
-
pyFTS.models.nonstationary.perturbation.
periodic
(x, parameters)¶
-
pyFTS.models.nonstationary.perturbation.
polynomial
(x, parameters)¶
pyFTS.models.nonstationary.util module¶
-
pyFTS.models.nonstationary.util.
plot_sets
(partitioner, start=0, end=10, step=1, tam=[5, 5], colors=None, save=False, file=None, axes=None, data=None, window_size=1, only_lines=False)¶
-
pyFTS.models.nonstationary.util.
plot_sets_conditional
(model, data, step=1, size=[5, 5], colors=None, save=False, file=None, axes=None, fig=None)¶
Module contents¶
Fuzzy time series with nonstationary fuzzy sets, for heteroskedastic data