pyFTS.models.incremental package

Module contents

FTS methods with incremental/online learning

Submodules

pyFTS.models.incremental.TimeVariant module

Meta model that wraps another FTS method and continously retrain it using a data window with the most recent data

class pyFTS.models.incremental.TimeVariant.Retrainer(**kwargs)

Bases: pyFTS.common.fts.FTS

Meta model for incremental/online learning

forecast(data, **kwargs)

Point forecast one step ahead

Parameters:
  • data – time series data with the minimal length equal to the max_lag of the model
  • kwargs – model specific parameters
Returns:

a list with the forecasted values

train(data, **kwargs)

Method specific parameter fitting

Parameters:
  • data – training time series data
  • kwargs – Method specific parameters

pyFTS.models.incremental.IncrementalEnsemble module

Time Variant/Incremental Ensemble of FTS methods

class pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS(**kwargs)

Bases: pyFTS.models.ensemble.ensemble.EnsembleFTS

Time Variant/Incremental Ensemble of FTS methods

forecast(data, **kwargs)

Point forecast one step ahead

Parameters:
  • data – time series data with the minimal length equal to the max_lag of the model
  • kwargs – model specific parameters
Returns:

a list with the forecasted values

train(data, **kwargs)

Method specific parameter fitting

Parameters:
  • data – training time series data
  • kwargs – Method specific parameters