pyFTS.models.seasonal package¶
Submodules¶
pyFTS.models.seasonal.SeasonalIndexer module¶
-
class
pyFTS.models.seasonal.SeasonalIndexer.
DataFrameSeasonalIndexer
(index_fields, index_seasons, data_field, **kwargs)[source]¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the Pandas.DataFrame index position to index the seasonality
-
class
pyFTS.models.seasonal.SeasonalIndexer.
DateTimeSeasonalIndexer
(date_field, index_fields, index_seasons, data_field, **kwargs)[source]¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use a Pandas.DataFrame date field to index the seasonality
-
class
pyFTS.models.seasonal.SeasonalIndexer.
LinearSeasonalIndexer
(seasons, units, ignore=None, **kwargs)[source]¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the data array/list position to index the seasonality
pyFTS.models.seasonal.cmsfts module¶
-
class
pyFTS.models.seasonal.cmsfts.
ContextualMultiSeasonalFTS
(**kwargs)[source]¶ Bases:
pyFTS.models.seasonal.sfts.SeasonalFTS
Contextual Multi-Seasonal Fuzzy Time Series
-
forecast
(data, **kwargs)[source]¶ Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
-
forecast_ahead
(data, steps, **kwargs)[source]¶ Point forecast from 1 to H steps ahead, where H is given by the steps parameter
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast (default: 1)
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted values
-
-
class
pyFTS.models.seasonal.cmsfts.
ContextualSeasonalFLRG
(seasonality)[source]¶ Bases:
pyFTS.models.seasonal.sfts.SeasonalFLRG
Contextual Seasonal Fuzzy Logical Relationship Group
pyFTS.models.seasonal.common module¶
-
class
pyFTS.models.seasonal.common.
DateTime
(value)[source]¶ Bases:
enum.Enum
Data and Time granularity for time granularity and seasonality identification
-
day_of_month
= 30¶
-
day_of_week
= 7¶
-
day_of_year
= 364¶
-
half
= 2¶
-
hour
= 24¶
-
hour_of_day
= 24¶
-
hour_of_month
= 744¶
-
hour_of_week
= 168¶
-
hour_of_year
= 8736¶
-
minute
= 60¶
-
minute_of_day
= 1440¶
-
minute_of_hour
= 60¶
-
minute_of_month
= 44640¶
-
minute_of_week
= 10080¶
-
minute_of_year
= 524160¶
-
month
= 12¶
-
quarter
= 4¶
-
second
= 60¶
-
second_of_day
= 86400¶
-
second_of_hour
= 3600¶
-
second_of_minute
= 60.00001¶
-
sixth
= 6¶
-
third
= 3¶
-
year
= 1¶
-
-
class
pyFTS.models.seasonal.common.
FuzzySet
(datepart, name, mf, parameters, centroid, alpha=1.0, **kwargs)[source]¶ Bases:
pyFTS.common.FuzzySet.FuzzySet
Temporal/Seasonal Fuzzy Set
pyFTS.models.seasonal.msfts module¶
-
class
pyFTS.models.seasonal.msfts.
MultiSeasonalFTS
(name, indexer, **kwargs)[source]¶ Bases:
pyFTS.models.seasonal.sfts.SeasonalFTS
Multi-Seasonal Fuzzy Time Series
-
forecast
(data, **kwargs)[source]¶ Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
-
forecast_ahead
(data, steps, **kwargs)[source]¶ Point forecast from 1 to H steps ahead, where H is given by the steps parameter
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast (default: 1)
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted values
-
pyFTS.models.seasonal.partitioner module¶
-
class
pyFTS.models.seasonal.partitioner.
TimeGridPartitioner
(**kwargs)[source]¶ Bases:
pyFTS.partitioners.partitioner.Partitioner
Even Length DateTime Grid Partitioner
-
build
(data)[source]¶ Perform the partitioning of the Universe of Discourse
- Parameters
data – training data
- Returns
-
mask
¶ A string with datetime formating mask
-
search
(data, **kwargs)[source]¶ Perform a search for the nearest fuzzy sets of the point ‘data’. This function were designed to work with several overlapped fuzzy sets.
- Parameters
data – the value to search for the nearest fuzzy sets
type – the return type: ‘index’ for the fuzzy set indexes or ‘name’ for fuzzy set names.
results – the number of nearest fuzzy sets to return
- Returns
a list with the nearest fuzzy sets
-
season
¶ Seasonality, a pyFTS.models.seasonal.common.DateTime object
-
pyFTS.models.seasonal.sfts module¶
Simple First Order Seasonal Fuzzy Time Series implementation of Song (1999) based of Conventional FTS by Chen (1996)
Song, “Seasonal forecasting in fuzzy time series,” Fuzzy sets Syst., vol. 107, pp. 235–236, 1999.
S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.
-
class
pyFTS.models.seasonal.sfts.
SeasonalFLRG
(seasonality)[source]¶ Bases:
pyFTS.common.flrg.FLRG
First Order Seasonal Fuzzy Logical Relationship Group
-
class
pyFTS.models.seasonal.sfts.
SeasonalFTS
(**kwargs)[source]¶ Bases:
pyFTS.common.fts.FTS
First Order Seasonal Fuzzy Time Series