pyFTS.models.nonstationary package¶
Submodules¶
pyFTS.models.nonstationary.common module¶
Non Stationary Fuzzy Sets
GARIBALDI, Jonathan M.; JAROSZEWSKI, Marcin; MUSIKASUWAN, Salang. Nonstationary fuzzy sets. IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.
- class pyFTS.models.nonstationary.common.FuzzySet(name, mf, parameters, **kwargs)[source]¶
Bases:
pyFTS.common.FuzzySet.FuzzySet
Non Stationary Fuzzy Sets
- location¶
Pertubation function that affects the location of the membership function
- location_params¶
Parameters for location pertubation function
- membership(x, t)[source]¶
Calculate the membership value of a given input
- Parameters
x – input value
t – time displacement or perturbation parameters
- Returns
membership value of x at this fuzzy set
- noise¶
Pertubation function that adds noise on the membership function
- noise_params¶
Parameters for noise pertubation function
- width¶
Pertubation function that affects the width of the membership function
- width_params¶
Parameters for width pertubation function
- pyFTS.models.nonstationary.common.fuzzify(inst, t, fuzzySets)[source]¶
Calculate the membership values for a data point given nonstationary fuzzy sets
- Parameters
inst – data points
t – time displacement of the instance
fuzzySets – list of fuzzy sets
- Returns
array of membership values
pyFTS.models.nonstationary.cvfts module¶
- class pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS(**kwargs)[source]¶
Bases:
pyFTS.models.hofts.HighOrderFTS
- benchmark_only: bool¶
A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.
- forecast(ndata, **kwargs)[source]¶
Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
- forecast_interval(ndata, **kwargs)[source]¶
Interval forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the prediction intervals
- has_interval_forecasting: bool¶
A boolean value indicating if the model supports interval forecasting, default: False
- has_point_forecasting: bool¶
A boolean value indicating if the model supports point forecasting, default: True
- has_probability_forecasting: bool¶
A boolean value indicating if the model support probabilistic forecasting, default: False
- has_seasonality: bool¶
A boolean value indicating if the model supports seasonal indexers, default: False
- is_clustered: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False
- is_high_order: bool¶
A boolean value indicating if the model support orders greater than 1, default: False
- is_multivariate: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False
- log: pd.DataFrame¶
- max_lag: int¶
A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead
- min_order: int¶
In high order models, this integer value indicates the minimal order supported for the model, default: 1
- original_max: float¶
A float with the upper limit of the Universe of Discourse, the maximal value found on training data
- original_min: float¶
A float with the lower limit of the Universe of Discourse, the minimal value found on training data
- partitioner: partitioner.Partitioner¶
A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.
- train(ndata, **kwargs)[source]¶
Method specific parameter fitting
- Parameters
data – training time series data
kwargs – Method specific parameters
- transformations: list[transformation.Transformation]¶
A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []
- class pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG(order, **kwargs)[source]¶
Bases:
pyFTS.models.hofts.HighOrderFTS
Conventional High Order Fuzzy Logical Relationship Group
- benchmark_only: bool¶
A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.
- has_interval_forecasting: bool¶
A boolean value indicating if the model supports interval forecasting, default: False
- has_point_forecasting: bool¶
A boolean value indicating if the model supports point forecasting, default: True
- has_probability_forecasting: bool¶
A boolean value indicating if the model support probabilistic forecasting, default: False
- has_seasonality: bool¶
A boolean value indicating if the model supports seasonal indexers, default: False
- is_clustered: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False
- is_high_order: bool¶
A boolean value indicating if the model support orders greater than 1, default: False
- is_multivariate: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False
- log: pd.DataFrame¶
- max_lag: int¶
A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead
- min_order: int¶
In high order models, this integer value indicates the minimal order supported for the model, default: 1
- original_max: float¶
A float with the upper limit of the Universe of Discourse, the maximal value found on training data
- original_min: float¶
A float with the lower limit of the Universe of Discourse, the minimal value found on training data
- partitioner: partitioner.Partitioner¶
A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.
- transformations: list[transformation.Transformation]¶
A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []
pyFTS.models.nonstationary.flrg module¶
- class pyFTS.models.nonstationary.flrg.NonStationaryFLRG(LHS, **kwargs)[source]¶
Bases:
pyFTS.common.flrg.FLRG
- get_lower(*args)[source]¶
Returns the lower bound value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
lower bound value
- get_membership(data, *args)[source]¶
Returns the membership value of the FLRG for the input data
- Parameters
data – input data
sets – fuzzy sets
- Returns
the membership value
- get_midpoint(*args)[source]¶
Returns the midpoint value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
the midpoint value
pyFTS.models.nonstationary.honsfts module¶
- class pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG(order, **kwargs)[source]¶
Bases:
pyFTS.models.nonstationary.flrg.NonStationaryFLRG
First Order NonStationary Fuzzy Logical Relationship Group
- get_lower(sets, perturb)[source]¶
Returns the lower bound value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
lower bound value
- get_midpoint(sets, perturb)[source]¶
Returns the midpoint value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
the midpoint value
- class pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS(**kwargs)[source]¶
Bases:
pyFTS.models.nonstationary.nsfts.NonStationaryFTS
NonStationaryFTS Fuzzy Time Series
- benchmark_only: bool¶
A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.
- forecast(ndata, **kwargs)[source]¶
Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
- has_interval_forecasting: bool¶
A boolean value indicating if the model supports interval forecasting, default: False
- has_point_forecasting: bool¶
A boolean value indicating if the model supports point forecasting, default: True
- has_probability_forecasting: bool¶
A boolean value indicating if the model support probabilistic forecasting, default: False
- has_seasonality: bool¶
A boolean value indicating if the model supports seasonal indexers, default: False
- is_clustered: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False
- is_high_order: bool¶
A boolean value indicating if the model support orders greater than 1, default: False
- is_multivariate: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False
- log: pd.DataFrame¶
- max_lag: int¶
A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead
- min_order: int¶
In high order models, this integer value indicates the minimal order supported for the model, default: 1
- original_max: float¶
A float with the upper limit of the Universe of Discourse, the maximal value found on training data
- original_min: float¶
A float with the lower limit of the Universe of Discourse, the minimal value found on training data
- partitioner: partitioner.Partitioner¶
A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.
- train(data, **kwargs)[source]¶
Method specific parameter fitting
- Parameters
data – training time series data
kwargs – Method specific parameters
- transformations: list[transformation.Transformation]¶
A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []
pyFTS.models.nonstationary.nsfts module¶
- class pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG(LHS, **kwargs)[source]¶
Bases:
pyFTS.models.nonstationary.flrg.NonStationaryFLRG
First Order NonStationary Fuzzy Logical Relationship Group
- class pyFTS.models.nonstationary.nsfts.NonStationaryFTS(**kwargs)[source]¶
Bases:
pyFTS.common.fts.FTS
NonStationaryFTS Fuzzy Time Series
- benchmark_only: bool¶
A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.
- forecast(ndata, **kwargs)[source]¶
Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
- forecast_interval(ndata, **kwargs)[source]¶
Interval forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the prediction intervals
- has_interval_forecasting: bool¶
A boolean value indicating if the model supports interval forecasting, default: False
- has_point_forecasting: bool¶
A boolean value indicating if the model supports point forecasting, default: True
- has_probability_forecasting: bool¶
A boolean value indicating if the model support probabilistic forecasting, default: False
- has_seasonality: bool¶
A boolean value indicating if the model supports seasonal indexers, default: False
- is_clustered: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False
- is_high_order: bool¶
A boolean value indicating if the model support orders greater than 1, default: False
- is_multivariate: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False
- log: pd.DataFrame¶
- max_lag: int¶
A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead
- min_order: int¶
In high order models, this integer value indicates the minimal order supported for the model, default: 1
- original_max: float¶
A float with the upper limit of the Universe of Discourse, the maximal value found on training data
- original_min: float¶
A float with the lower limit of the Universe of Discourse, the minimal value found on training data
- partitioner: partitioner.Partitioner¶
A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.
- train(data, **kwargs)[source]¶
Method specific parameter fitting
- Parameters
data – training time series data
kwargs – Method specific parameters
- transformations: list[transformation.Transformation]¶
A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []
- class pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG(LHS, **kwargs)[source]¶
Bases:
pyFTS.models.nonstationary.flrg.NonStationaryFLRG
First Order NonStationary Fuzzy Logical Relationship Group
- class pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS(**kwargs)[source]¶
Bases:
pyFTS.models.nonstationary.nsfts.NonStationaryFTS
Weighted NonStationaryFTS Fuzzy Time Series
- benchmark_only: bool¶
A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.
- has_interval_forecasting: bool¶
A boolean value indicating if the model supports interval forecasting, default: False
- has_point_forecasting: bool¶
A boolean value indicating if the model supports point forecasting, default: True
- has_probability_forecasting: bool¶
A boolean value indicating if the model support probabilistic forecasting, default: False
- has_seasonality: bool¶
A boolean value indicating if the model supports seasonal indexers, default: False
- is_clustered: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False
- is_high_order: bool¶
A boolean value indicating if the model support orders greater than 1, default: False
- is_multivariate: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False
- log: pd.DataFrame¶
- max_lag: int¶
A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead
- min_order: int¶
In high order models, this integer value indicates the minimal order supported for the model, default: 1
- original_max: float¶
A float with the upper limit of the Universe of Discourse, the maximal value found on training data
- original_min: float¶
A float with the lower limit of the Universe of Discourse, the minimal value found on training data
- partitioner: partitioner.Partitioner¶
A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.
- train(data, **kwargs)[source]¶
Method specific parameter fitting
- Parameters
data – training time series data
kwargs – Method specific parameters
- transformations: list[transformation.Transformation]¶
A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []
pyFTS.models.nonstationary.partitioners module¶
- class pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner(data, part, **kwargs)[source]¶
Bases:
pyFTS.partitioners.partitioner.Partitioner
Non Stationary Universe of Discourse Partitioner
- class pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner(data, part, **kwargs)[source]¶
Bases:
pyFTS.partitioners.partitioner.Partitioner
Non Stationary Universe of Discourse Partitioner
pyFTS.models.nonstationary.perturbation module¶
Pertubation functions for Non Stationary Fuzzy Sets
pyFTS.models.nonstationary.util module¶
Module contents¶
Fuzzy time series with nonstationary fuzzy sets, for heteroskedastic data