pyFTS.models.incremental package¶
Module contents¶
FTS methods with incremental/online learning
Submodules¶
pyFTS.models.incremental.TimeVariant module¶
Meta model that wraps another FTS method and continously retrain it using a data window with the most recent data
- class pyFTS.models.incremental.TimeVariant.Retrainer(**kwargs)[source]¶
Bases:
pyFTS.common.fts.FTS
Meta model for incremental/online learning that retrain its internal model after data windows controlled by the parameter ‘batch_size’, using as the training data a window of recent lags, whose size is controlled by the parameter ‘window_length’.
- batch_size¶
The batch interval between each retraining
- benchmark_only: bool¶
A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.
- forecast(data, **kwargs)[source]¶
Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
- forecast_ahead(data, steps, **kwargs)[source]¶
Point forecast from 1 to H steps ahead, where H is given by the steps parameter
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast (default: 1)
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted values
- fts_method¶
The FTS method to be called when a new model is build
- fts_params¶
The FTS method specific parameters
- has_interval_forecasting: bool¶
A boolean value indicating if the model supports interval forecasting, default: False
- has_point_forecasting: bool¶
A boolean value indicating if the model supports point forecasting, default: True
- has_probability_forecasting: bool¶
A boolean value indicating if the model support probabilistic forecasting, default: False
- has_seasonality: bool¶
A boolean value indicating if the model supports seasonal indexers, default: False
- is_clustered: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False
- is_high_order: bool¶
A boolean value indicating if the model support orders greater than 1, default: False
- is_multivariate: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False
- log: pd.DataFrame¶
- max_lag: int¶
A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead
- min_order: int¶
In high order models, this integer value indicates the minimal order supported for the model, default: 1
- model¶
The most recent trained model
- offset()[source]¶
Returns the number of lags to skip in the input test data in order to synchronize it with the forecasted values given by the predict function. This is necessary due to the order of the model, among other parameters.
- Returns
An integer with the number of lags to skip
- original_max: float¶
A float with the upper limit of the Universe of Discourse, the maximal value found on training data
- original_min: float¶
A float with the lower limit of the Universe of Discourse, the minimal value found on training data
- partitioner: partitioner.Partitioner¶
The most recent trained partitioner
- partitioner_method¶
The partitioner method to be called when a new model is build
- partitioner_params¶
The partitioner method parameters
- train(data, **kwargs)[source]¶
Method specific parameter fitting
- Parameters
data – training time series data
kwargs – Method specific parameters
- transformations: list[transformation.Transformation]¶
A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []
- uod_clip: bool¶
Flag indicating if the test data will be clipped inside the training Universe of Discourse
- window_length¶
The memory window length
pyFTS.models.incremental.IncrementalEnsemble module¶
Time Variant/Incremental Ensemble of FTS methods
- class pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS(**kwargs)[source]¶
Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS
Time Variant/Incremental Ensemble of FTS methods
- batch_size¶
The batch interval between each retraining
- benchmark_only: bool¶
A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.
- forecast(data, **kwargs)[source]¶
Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
- forecast_ahead(data, steps, **kwargs)[source]¶
Point forecast from 1 to H steps ahead, where H is given by the steps parameter
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast (default: 1)
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted values
- fts_method¶
The FTS method to be called when a new model is build
- fts_params¶
The FTS method specific parameters
- has_interval_forecasting: bool¶
A boolean value indicating if the model supports interval forecasting, default: False
- has_point_forecasting: bool¶
A boolean value indicating if the model supports point forecasting, default: True
- has_probability_forecasting: bool¶
A boolean value indicating if the model support probabilistic forecasting, default: False
- has_seasonality: bool¶
A boolean value indicating if the model supports seasonal indexers, default: False
- is_clustered: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False
- is_high_order: bool¶
A boolean value indicating if the model support orders greater than 1, default: False
- is_multivariate: bool¶
A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False
- log: pd.DataFrame¶
- max_lag: int¶
A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead
- min_order: int¶
In high order models, this integer value indicates the minimal order supported for the model, default: 1
- num_models¶
The number of models to hold in the ensemble
- offset()[source]¶
Returns the number of lags to skip in the input test data in order to synchronize it with the forecasted values given by the predict function. This is necessary due to the order of the model, among other parameters.
- Returns
An integer with the number of lags to skip
- original_max: float¶
A float with the upper limit of the Universe of Discourse, the maximal value found on training data
- original_min: float¶
A float with the lower limit of the Universe of Discourse, the minimal value found on training data
- partitioner: partitioner.Partitioner¶
A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.
- partitioner_method¶
The partitioner method to be called when a new model is build
- partitioner_params¶
The partitioner method parameters
- train(data, **kwargs)[source]¶
Method specific parameter fitting
- Parameters
data – training time series data
kwargs – Method specific parameters
- transformations: list[transformation.Transformation]¶
A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []
- uod_clip: bool¶
Flag indicating if the test data will be clipped inside the training Universe of Discourse
- window_length¶
The memory window length