Source code for pyFTS.models.hwang

"""
High Order Fuzzy Time Series by Hwang, Chen and Lee (1998)

Jeng-Ren Hwang, Shyi-Ming Chen, and Chia-Hoang Lee, “Handling forecasting problems using fuzzy time series,” 
Fuzzy Sets Syst., no. 100, pp. 217–228, 1998.
"""

import numpy as np
from pyFTS.common import FuzzySet, FLR, fts


[docs]class HighOrderFTS(fts.FTS): def __init__(self, **kwargs): super(HighOrderFTS, self).__init__(**kwargs) self.is_high_order = True self.min_order = 2 self.name = "Hwang High Order FTS" self.shortname = "Hwang" self.detail = "Hwang" self.configure_lags(**kwargs)
[docs] def configure_lags(self, **kwargs): if "order" in kwargs: self.order = kwargs.get("order", 2) self.max_lag = self.order
[docs] def forecast(self, ndata, **kwargs): l = len(self.partitioner) cn = np.array([0.0 for k in range(l)]) ow = np.array([[0.0 for k in range(l)] for z in range(self.order - 1)]) rn = np.array([[0.0 for k in range(l)] for z in range(self.order - 1)]) ft = np.array([0.0 for k in range(l)]) ret = [] for t in np.arange(self.order-1, len(ndata)): for ix in range(l): s = self.partitioner.ordered_sets[ix] cn[ix] = self.partitioner.sets[s].membership( FuzzySet.grant_bounds(ndata[t], self.partitioner.sets, self.partitioner.ordered_sets)) for w in np.arange(self.order-1): ow[w, ix] = self.partitioner.sets[s].membership(FuzzySet.grant_bounds(ndata[t - w], self.partitioner.sets, self.partitioner.ordered_sets)) rn[w, ix] = ow[w, ix] * cn[ix] ft[ix] = max(ft[ix], rn[w, ix]) mft = max(ft) out = 0.0 count = 0.0 for ix in range(l): s = self.partitioner.ordered_sets[ix] if ft[ix] == mft: out = out + self.partitioner.sets[s].centroid count += 1.0 ret.append(out / count) return ret
[docs] def train(self, data, **kwargs): self.configure_lags(**kwargs)