Compare commits
1 Commits
master
...
petronioca
Author | SHA1 | Date | |
---|---|---|---|
|
73769ab5a7 |
57
.gitignore
vendored
57
.gitignore
vendored
@ -1,57 +0,0 @@
|
|||||||
# Byte-compiled / optimized / DLL files
|
|
||||||
__pycache__/
|
|
||||||
*.py[cod]
|
|
||||||
|
|
||||||
# C extensions
|
|
||||||
*.so
|
|
||||||
|
|
||||||
# Distribution / packaging
|
|
||||||
.Python
|
|
||||||
env/
|
|
||||||
build/
|
|
||||||
develop-eggs/
|
|
||||||
dist/
|
|
||||||
downloads/
|
|
||||||
eggs/
|
|
||||||
.eggs/
|
|
||||||
lib/
|
|
||||||
lib64/
|
|
||||||
parts/
|
|
||||||
sdist/
|
|
||||||
var/
|
|
||||||
*.egg-info/
|
|
||||||
.installed.cfg
|
|
||||||
*.egg
|
|
||||||
|
|
||||||
# PyInstaller
|
|
||||||
# Usually these files are written by a python script from a template
|
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
||||||
*.manifest
|
|
||||||
*.spec
|
|
||||||
|
|
||||||
# Installer logs
|
|
||||||
pip-log.txt
|
|
||||||
pip-delete-this-directory.txt
|
|
||||||
|
|
||||||
# Unit test / coverage reports
|
|
||||||
htmlcov/
|
|
||||||
.tox/
|
|
||||||
.coverage
|
|
||||||
.coverage.*
|
|
||||||
.cache
|
|
||||||
nosetests.xml
|
|
||||||
coverage.xml
|
|
||||||
*,cover
|
|
||||||
|
|
||||||
# Translations
|
|
||||||
*.mo
|
|
||||||
*.pot
|
|
||||||
|
|
||||||
# Django stuff:
|
|
||||||
*.log
|
|
||||||
|
|
||||||
# Sphinx documentation
|
|
||||||
docs/_build/
|
|
||||||
|
|
||||||
# PyBuilder
|
|
||||||
target/
|
|
2
MANIFEST
2
MANIFEST
@ -104,7 +104,7 @@ pyFTS/models/seasonal/common.py
|
|||||||
pyFTS/models/seasonal/msfts.py
|
pyFTS/models/seasonal/msfts.py
|
||||||
pyFTS/models/seasonal/partitioner.py
|
pyFTS/models/seasonal/partitioner.py
|
||||||
pyFTS/models/seasonal/sfts.py
|
pyFTS/models/seasonal/sfts.py
|
||||||
pyFTS/partitioners/KMeans.py
|
pyFTS/partitioners/CMeans.py
|
||||||
pyFTS/partitioners/Entropy.py
|
pyFTS/partitioners/Entropy.py
|
||||||
pyFTS/partitioners/FCM.py
|
pyFTS/partitioners/FCM.py
|
||||||
pyFTS/partitioners/Grid.py
|
pyFTS/partitioners/Grid.py
|
||||||
|
@ -38,7 +38,7 @@ Fuzzy Time Series (FTS) are non parametric methods for time series forecasting b
|
|||||||
2. **Universe of Discourse Partitioning**: This is the most important step. Here, the range of values of the numerical time series *Y(t)* will be splited in overlapped intervals and for each interval will be created a Fuzzy Set. This step is performed by pyFTS.partition module and its classes (for instance GridPartitioner, EntropyPartitioner, etc). The main parameters are:
|
2. **Universe of Discourse Partitioning**: This is the most important step. Here, the range of values of the numerical time series *Y(t)* will be splited in overlapped intervals and for each interval will be created a Fuzzy Set. This step is performed by pyFTS.partition module and its classes (for instance GridPartitioner, EntropyPartitioner, etc). The main parameters are:
|
||||||
- the number of intervals
|
- the number of intervals
|
||||||
- which fuzzy membership function (on [pyFTS.common.Membership](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/common/Membership.py))
|
- which fuzzy membership function (on [pyFTS.common.Membership](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/common/Membership.py))
|
||||||
- partition scheme ([GridPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Grid.py), [EntropyPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Entropy.py)[3], [FCMPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/FCM.py), [KMeansPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/KMeans.py), [HuarngPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Huarng.py)[4])
|
- partition scheme ([GridPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Grid.py), [EntropyPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Entropy.py)[3], [FCMPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/FCM.py), [CMeansPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/CMeans.py), [HuarngPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Huarng.py)[4])
|
||||||
|
|
||||||
Check out the jupyter notebook on [notebooks/Partitioners.ipynb](https://github.com/PYFTS/notebooks/blob/master/Partitioners.ipynb) for sample codes.
|
Check out the jupyter notebook on [notebooks/Partitioners.ipynb](https://github.com/PYFTS/notebooks/blob/master/Partitioners.ipynb) for sample codes.
|
||||||
|
|
||||||
|
@ -28,10 +28,10 @@ pyFTS.partitioners.Class module
|
|||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
pyFTS.partitioners.KMeans module
|
pyFTS.partitioners.CMeans module
|
||||||
--------------------------------
|
--------------------------------
|
||||||
|
|
||||||
.. automodule:: pyFTS.partitioners.KMeans
|
.. automodule:: pyFTS.partitioners.CMeans
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from pyFTS.common.transformations.transformation import Transformation
|
from pyFTS.common.transformations.transformation import Transformation
|
||||||
# from pandas import datetime
|
from pandas import datetime
|
||||||
from sklearn.linear_model import LinearRegression
|
from sklearn.linear_model import LinearRegression
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
@ -146,7 +146,7 @@ class ClusteredMVFTS(mvfts.MVFTS):
|
|||||||
|
|
||||||
new_data_point[self.target_variable.data_label] = tmp.expected_value()
|
new_data_point[self.target_variable.data_label] = tmp.expected_value()
|
||||||
|
|
||||||
sample = pd.concat([sample, pd.DataFrame([new_data_point])], ignore_index=True)
|
sample = sample.append(new_data_point, ignore_index=True)
|
||||||
|
|
||||||
return ret[-steps:]
|
return ret[-steps:]
|
||||||
|
|
||||||
@ -199,7 +199,7 @@ class ClusteredMVFTS(mvfts.MVFTS):
|
|||||||
for k in np.arange(0, steps):
|
for k in np.arange(0, steps):
|
||||||
sample = ret.iloc[k:self.order+k]
|
sample = ret.iloc[k:self.order+k]
|
||||||
tmp = self.forecast_multivariate(sample, **kwargs)
|
tmp = self.forecast_multivariate(sample, **kwargs)
|
||||||
ret = pd.concat([ret, pd.DataFrame([tmp])], ignore_index=True)
|
ret = ret.append(tmp, ignore_index=True)
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
@ -211,7 +211,7 @@ class MVFTS(fts.FTS):
|
|||||||
|
|
||||||
new_data_point[self.target_variable.data_label] = tmp
|
new_data_point[self.target_variable.data_label] = tmp
|
||||||
|
|
||||||
ndata = pd.concat([ndata, pd.DataFrame([new_data_point])], ignore_index=True)
|
ndata = ndata.append(new_data_point, ignore_index=True)
|
||||||
|
|
||||||
return ret[-steps:]
|
return ret[-steps:]
|
||||||
|
|
||||||
@ -307,8 +307,8 @@ class MVFTS(fts.FTS):
|
|||||||
new_data_point_lo[self.target_variable.data_label] = min(tmp_lo)
|
new_data_point_lo[self.target_variable.data_label] = min(tmp_lo)
|
||||||
new_data_point_up[self.target_variable.data_label] = max(tmp_up)
|
new_data_point_up[self.target_variable.data_label] = max(tmp_up)
|
||||||
|
|
||||||
lo = pd.concat([lo, pd.DataFrame([new_data_point_lo])], ignore_index=True)
|
lo = lo.append(new_data_point_lo, ignore_index=True)
|
||||||
up = pd.concat([up, pd.DataFrame([new_data_point_up])], ignore_index=True)
|
up = up.append(new_data_point_up, ignore_index=True)
|
||||||
|
|
||||||
return ret[-steps:]
|
return ret[-steps:]
|
||||||
|
|
||||||
|
@ -14,15 +14,15 @@ def distance(x, y):
|
|||||||
return math.sqrt(tmp)
|
return math.sqrt(tmp)
|
||||||
|
|
||||||
|
|
||||||
def k_means(k, dados, tam):
|
def c_means(k, dados, tam):
|
||||||
# Инициализирует центроиды, выбирая случайные элементы из множества
|
# Inicializa as centróides escolhendo elementos aleatórios dos conjuntos
|
||||||
centroides = [dados[rnd.randint(0, len(dados)-1)] for kk in range(0, k)]
|
centroides = [dados[rnd.randint(0, len(dados)-1)] for kk in range(0, k)]
|
||||||
|
|
||||||
grupos = [-1 for x in range(0, len(dados))]
|
grupos = [-1 for x in range(0, len(dados))]
|
||||||
|
|
||||||
it_semmodificacao = 0
|
it_semmodificacao = 0
|
||||||
|
|
||||||
# для каждого экземпляра
|
# para cada instância
|
||||||
iteracoes = 0
|
iteracoes = 0
|
||||||
while iteracoes < 1000 and it_semmodificacao < 10:
|
while iteracoes < 1000 and it_semmodificacao < 10:
|
||||||
inst_count = 0
|
inst_count = 0
|
||||||
@ -31,7 +31,7 @@ def k_means(k, dados, tam):
|
|||||||
|
|
||||||
for instancia in dados:
|
for instancia in dados:
|
||||||
|
|
||||||
# проверяет расстояние до каждого центроида
|
# verifica a distância para cada centroide
|
||||||
grupo_count = 0
|
grupo_count = 0
|
||||||
dist = 10000
|
dist = 10000
|
||||||
|
|
||||||
@ -41,7 +41,7 @@ def k_means(k, dados, tam):
|
|||||||
tmp = distance(instancia, grupo)
|
tmp = distance(instancia, grupo)
|
||||||
if tmp < dist:
|
if tmp < dist:
|
||||||
dist = tmp
|
dist = tmp
|
||||||
# ассоциирует центроид с наименьшим расстоянием до экземпляра
|
# associa a a centroide de menor distância à instância
|
||||||
grupos[inst_count] = grupo_count
|
grupos[inst_count] = grupo_count
|
||||||
grupo_count = grupo_count + 1
|
grupo_count = grupo_count + 1
|
||||||
|
|
||||||
@ -55,7 +55,7 @@ def k_means(k, dados, tam):
|
|||||||
else:
|
else:
|
||||||
it_semmodificacao = 0
|
it_semmodificacao = 0
|
||||||
|
|
||||||
# обновляет каждый центроид на основе средних значений всех связанных с ним экземпляров
|
# atualiza cada centroide com base nos valores médios de todas as instâncias à ela associadas
|
||||||
grupo_count = 0
|
grupo_count = 0
|
||||||
for grupo in centroides:
|
for grupo in centroides:
|
||||||
total_inst = functools.reduce(operator.add, [1 for xx in grupos if xx == grupo_count], 0)
|
total_inst = functools.reduce(operator.add, [1 for xx in grupos if xx == grupo_count], 0)
|
||||||
@ -77,21 +77,21 @@ def k_means(k, dados, tam):
|
|||||||
return centroides
|
return centroides
|
||||||
|
|
||||||
|
|
||||||
class KMeansPartitioner(partitioner.Partitioner):
|
class CMeansPartitioner(partitioner.Partitioner):
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
super(KMeansPartitioner, self).__init__(name="KMeans", **kwargs)
|
super(CMeansPartitioner, self).__init__(name="CMeans", **kwargs)
|
||||||
|
|
||||||
def build(self, data):
|
def build(self, data):
|
||||||
sets = {}
|
sets = {}
|
||||||
|
|
||||||
kwargs = {'type': self.type, 'variable': self.variable}
|
kwargs = {'type': self.type, 'variable': self.variable}
|
||||||
|
|
||||||
centroides = k_means(self.partitions, data, 1)
|
centroides = c_means(self.partitions, data, 1)
|
||||||
centroides.append(self.max)
|
centroides.append(self.max)
|
||||||
centroides.append(self.min)
|
centroides.append(self.min)
|
||||||
centroides = list(set(centroides))
|
centroides = list(set(centroides))
|
||||||
centroides.sort()
|
centroides.sort()
|
||||||
for c in range(1, len(centroides) - 1):
|
for c in np.arange(1, len(centroides) - 1):
|
||||||
_name = self.get_name(c)
|
_name = self.get_name(c)
|
||||||
sets[_name] = FuzzySet.FuzzySet(_name, Membership.trimf,
|
sets[_name] = FuzzySet.FuzzySet(_name, Membership.trimf,
|
||||||
[round(centroides[c - 1], 3), round(centroides[c], 3), round(centroides[c + 1], 3)],
|
[round(centroides[c - 1], 3), round(centroides[c], 3), round(centroides[c + 1], 3)],
|
@ -36,7 +36,7 @@ def fuzzy_cmeans(k, data, size, m, deltadist=0.001):
|
|||||||
centroids = [data[rnd.randint(0, data_length - 1)] for kk in range(0, k)]
|
centroids = [data[rnd.randint(0, data_length - 1)] for kk in range(0, k)]
|
||||||
|
|
||||||
# Membership table
|
# Membership table
|
||||||
membership_table = np.zeros((data_length, k))
|
membership_table = np.zeros((k, data_length)) #[[0 for kk in range(0, k)] for xx in range(0, data_length)]
|
||||||
|
|
||||||
mean_change = 1000
|
mean_change = 1000
|
||||||
|
|
||||||
@ -50,12 +50,12 @@ def fuzzy_cmeans(k, data, size, m, deltadist=0.001):
|
|||||||
inst_count = 0
|
inst_count = 0
|
||||||
for instance in data:
|
for instance in data:
|
||||||
|
|
||||||
dist_groups = np.zeros(k)
|
dist_groups = np.zeros(k) #[0 for xx in range(0, k)]
|
||||||
|
|
||||||
for group_count, group in enumerate(centroids):
|
for group_count, group in enumerate(centroids):
|
||||||
dist_groups[group_count] = fuzzy_distance(group, instance)
|
dist_groups[group_count] = fuzzy_distance(group, instance)
|
||||||
|
|
||||||
# dist_groups_total = functools.reduce(operator.add, [xk for xk in dist_groups])
|
dist_groups_total = functools.reduce(operator.add, [xk for xk in dist_groups])
|
||||||
|
|
||||||
for grp in range(0, k):
|
for grp in range(0, k):
|
||||||
if dist_groups[grp] == 0:
|
if dist_groups[grp] == 0:
|
||||||
|
@ -19,13 +19,13 @@ class HuarngPartitioner(partitioner.Partitioner):
|
|||||||
def build(self, data):
|
def build(self, data):
|
||||||
diff = Transformations.Differential(1)
|
diff = Transformations.Differential(1)
|
||||||
data2 = diff.apply(data)
|
data2 = diff.apply(data)
|
||||||
divs = np.abs( np.mean(data2) / 2 )
|
davg = np.abs( np.mean(data2) / 2 )
|
||||||
|
|
||||||
if divs <= 1.0:
|
if davg <= 1.0:
|
||||||
base = 0.1
|
base = 0.1
|
||||||
elif 1 < divs <= 10:
|
elif 1 < davg <= 10:
|
||||||
base = 1.0
|
base = 1.0
|
||||||
elif 10 < divs <= 100:
|
elif 10 < davg <= 100:
|
||||||
base = 10
|
base = 10
|
||||||
else:
|
else:
|
||||||
base = 100
|
base = 100
|
||||||
|
@ -18,20 +18,19 @@ all_methods = [Grid.GridPartitioner, Entropy.EntropyPartitioner, FCM.FCMPartitio
|
|||||||
mfs = [Membership.trimf, Membership.gaussmf, Membership.trapmf]
|
mfs = [Membership.trimf, Membership.gaussmf, Membership.trapmf]
|
||||||
|
|
||||||
|
|
||||||
def plot_sets(sets: dict, titles : list, size=[12, 10], save=False, file=None, axis=None):
|
def plot_sets(data, sets: dict, titles : list, size=[12, 10], save=False, file=None, axis=None):
|
||||||
"""
|
"""
|
||||||
Plot all fuzzy sets in a Partitioner
|
Plot all fuzzy sets in a Partitioner
|
||||||
|
|
||||||
"""
|
"""
|
||||||
num = len(sets)
|
num = len(sets)
|
||||||
num_cols_plot = 1
|
|
||||||
|
|
||||||
if axis is None:
|
if axis is None:
|
||||||
fig, axes = plt.subplots(nrows=num, ncols=num_cols_plot, figsize=size, squeeze=False)
|
fig, axes = plt.subplots(nrows=num, ncols=1,figsize=size)
|
||||||
for k in range(num):
|
for k in np.arange(0,num):
|
||||||
ticks = []
|
ticks = []
|
||||||
x = []
|
x = []
|
||||||
ax = axes[k, num_cols_plot-1] if axis is None else axis
|
ax = axes[k] if axis is None else axis
|
||||||
ax.set_title(titles[k])
|
ax.set_title(titles[k])
|
||||||
ax.set_ylim([0, 1.1])
|
ax.set_ylim([0, 1.1])
|
||||||
for key in sets[k].keys():
|
for key in sets[k].keys():
|
||||||
@ -55,7 +54,7 @@ def plot_sets(sets: dict, titles : list, size=[12, 10], save=False, file=None, a
|
|||||||
Util.show_and_save_image(fig, file, save)
|
Util.show_and_save_image(fig, file, save)
|
||||||
|
|
||||||
|
|
||||||
def plot_partitioners(objs, tam=[12, 10], save=False, file=None, axis=None):
|
def plot_partitioners(data, objs, tam=[12, 10], save=False, file=None, axis=None):
|
||||||
sets = [k.sets for k in objs]
|
sets = [k.sets for k in objs]
|
||||||
titles = [k.name for k in objs]
|
titles = [k.name for k in objs]
|
||||||
plot_sets(sets, titles, tam, save, file, axis)
|
plot_sets(sets, titles, tam, save, file, axis)
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
from pyFTS.common import FuzzySet, Membership
|
from pyFTS.common import FuzzySet, Membership
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.spatial import KDTree
|
from scipy.spatial import KDTree
|
||||||
import warnings
|
|
||||||
|
|
||||||
|
|
||||||
class Partitioner(object):
|
class Partitioner(object):
|
||||||
@ -47,9 +46,6 @@ class Partitioner(object):
|
|||||||
|
|
||||||
data = kwargs.get('data',[None])
|
data = kwargs.get('data',[None])
|
||||||
|
|
||||||
if isinstance(data, np.ndarray) and len(data.shape) > 1:
|
|
||||||
warnings.warn(f"An ndarray of dimension greater than 1 is used. shape.len(): {len(data.shape)}")
|
|
||||||
|
|
||||||
if self.indexer is not None:
|
if self.indexer is not None:
|
||||||
ndata = self.indexer.get_data(data)
|
ndata = self.indexer.get_data(data)
|
||||||
else:
|
else:
|
||||||
|
@ -11,7 +11,7 @@ from mpl_toolkits.mplot3d import Axes3D
|
|||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.partitioners import Grid, KMeans, FCM, Entropy
|
from pyFTS.partitioners import Grid, CMeans, FCM, Entropy
|
||||||
from pyFTS.common import FLR, FuzzySet, Membership, Transformations, Util, fts
|
from pyFTS.common import FLR, FuzzySet, Membership, Transformations, Util, fts
|
||||||
from pyFTS import sfts
|
from pyFTS import sfts
|
||||||
from pyFTS.models import msfts
|
from pyFTS.models import msfts
|
||||||
|
1
setup.py
1
setup.py
@ -26,7 +26,6 @@ setuptools.setup(
|
|||||||
'Programming Language :: Python :: 3.6',
|
'Programming Language :: Python :: 3.6',
|
||||||
'Programming Language :: Python :: 3.8',
|
'Programming Language :: Python :: 3.8',
|
||||||
'Programming Language :: Python :: 3.10',
|
'Programming Language :: Python :: 3.10',
|
||||||
'Programming Language :: Python :: 3.11',
|
|
||||||
'Intended Audience :: Science/Research',
|
'Intended Audience :: Science/Research',
|
||||||
'Intended Audience :: Developers',
|
'Intended Audience :: Developers',
|
||||||
'Intended Audience :: Education',
|
'Intended Audience :: Education',
|
||||||
|
Loading…
Reference in New Issue
Block a user