Compare commits
4 Commits
a8fb849bc8
...
4b348ad818
Author | SHA1 | Date | |
---|---|---|---|
4b348ad818 | |||
eac7a83265 | |||
ccc0196f56 | |||
3ec1b4c5ce |
@ -146,7 +146,7 @@ class ClusteredMVFTS(mvfts.MVFTS):
|
||||
|
||||
new_data_point[self.target_variable.data_label] = tmp.expected_value()
|
||||
|
||||
sample = sample.append(new_data_point, ignore_index=True)
|
||||
sample = pd.concat([sample, pd.DataFrame([new_data_point])], ignore_index=True)
|
||||
|
||||
return ret[-steps:]
|
||||
|
||||
@ -199,7 +199,7 @@ class ClusteredMVFTS(mvfts.MVFTS):
|
||||
for k in np.arange(0, steps):
|
||||
sample = ret.iloc[k:self.order+k]
|
||||
tmp = self.forecast_multivariate(sample, **kwargs)
|
||||
ret = ret.append(tmp, ignore_index=True)
|
||||
ret = pd.concat([ret, pd.DataFrame([tmp])], ignore_index=True)
|
||||
|
||||
return ret
|
||||
|
||||
|
@ -211,7 +211,7 @@ class MVFTS(fts.FTS):
|
||||
|
||||
new_data_point[self.target_variable.data_label] = tmp
|
||||
|
||||
ndata = ndata.append(new_data_point, ignore_index=True)
|
||||
ndata = pd.concat([ndata, pd.DataFrame([new_data_point])], ignore_index=True)
|
||||
|
||||
return ret[-steps:]
|
||||
|
||||
@ -307,8 +307,8 @@ class MVFTS(fts.FTS):
|
||||
new_data_point_lo[self.target_variable.data_label] = min(tmp_lo)
|
||||
new_data_point_up[self.target_variable.data_label] = max(tmp_up)
|
||||
|
||||
lo = lo.append(new_data_point_lo, ignore_index=True)
|
||||
up = up.append(new_data_point_up, ignore_index=True)
|
||||
lo = pd.concat([lo, pd.DataFrame([new_data_point_lo])], ignore_index=True)
|
||||
up = pd.concat([up, pd.DataFrame([new_data_point_up])], ignore_index=True)
|
||||
|
||||
return ret[-steps:]
|
||||
|
||||
|
@ -19,13 +19,13 @@ class HuarngPartitioner(partitioner.Partitioner):
|
||||
def build(self, data):
|
||||
diff = Transformations.Differential(1)
|
||||
data2 = diff.apply(data)
|
||||
davg = np.abs( np.mean(data2) / 2 )
|
||||
divs = np.abs( np.mean(data2) / 2 )
|
||||
|
||||
if davg <= 1.0:
|
||||
if divs <= 1.0:
|
||||
base = 0.1
|
||||
elif 1 < davg <= 10:
|
||||
elif 1 < divs <= 10:
|
||||
base = 1.0
|
||||
elif 10 < davg <= 100:
|
||||
elif 10 < divs <= 100:
|
||||
base = 10
|
||||
else:
|
||||
base = 100
|
||||
|
@ -47,7 +47,7 @@ class Partitioner(object):
|
||||
|
||||
data = kwargs.get('data',[None])
|
||||
|
||||
if len(data.shape) > 1:
|
||||
if isinstance(data, np.ndarray) and len(data.shape) > 1:
|
||||
warnings.warn(f"An ndarray of dimension greater than 1 is used. shape.len(): {len(data.shape)}")
|
||||
|
||||
if self.indexer is not None:
|
||||
|
Loading…
Reference in New Issue
Block a user