PEP 256 documentation
This commit is contained in:
parent
67a9d7e324
commit
ecfc9db862
@ -53,7 +53,6 @@ def rmse_interval(targets, forecasts):
|
||||
return np.sqrt(np.nanmean((fmean - targets) ** 2))
|
||||
|
||||
|
||||
|
||||
def mape(targets, forecasts):
|
||||
"""
|
||||
Mean Average Percentual Error
|
||||
@ -68,7 +67,6 @@ def mape(targets, forecasts):
|
||||
return np.mean(np.abs(targets - forecasts) / targets) * 100
|
||||
|
||||
|
||||
|
||||
def smape(targets, forecasts, type=2):
|
||||
"""
|
||||
Symmetric Mean Average Percentual Error
|
||||
@ -89,13 +87,11 @@ def smape(targets, forecasts, type=2):
|
||||
return sum(np.abs(forecasts - targets)) / sum(forecasts + targets)
|
||||
|
||||
|
||||
|
||||
def mape_interval(targets, forecasts):
|
||||
fmean = [np.mean(i) for i in forecasts]
|
||||
return np.mean(abs(fmean - targets) / fmean) * 100
|
||||
|
||||
|
||||
|
||||
def UStatistic(targets, forecasts):
|
||||
"""
|
||||
Theil's U Statistic
|
||||
@ -117,7 +113,6 @@ def UStatistic(targets, forecasts):
|
||||
return np.sqrt(sum(y) / sum(naive))
|
||||
|
||||
|
||||
|
||||
def TheilsInequality(targets, forecasts):
|
||||
"""
|
||||
Theil’s Inequality Coefficient
|
||||
@ -194,7 +189,7 @@ def pinball(tau, target, forecast):
|
||||
:param tau: quantile value in the range (0,1)
|
||||
:param target:
|
||||
:param forecast:
|
||||
:return: distance of forecast to the tau-quantile of the target
|
||||
:return: float, distance of forecast to the tau-quantile of the target
|
||||
"""
|
||||
if target >= forecast:
|
||||
return (target - forecast) * tau
|
||||
@ -208,7 +203,7 @@ def pinball_mean(tau, targets, forecasts):
|
||||
:param tau: quantile value in the range (0,1)
|
||||
:param targets: list of target values
|
||||
:param forecasts: list of prediction intervals
|
||||
:return:
|
||||
:return: float, the pinball loss mean for tau quantile
|
||||
"""
|
||||
try:
|
||||
if tau <= 0.5:
|
||||
@ -220,7 +215,6 @@ def pinball_mean(tau, targets, forecasts):
|
||||
print(ex)
|
||||
|
||||
|
||||
|
||||
def pmf_to_cdf(density):
|
||||
ret = []
|
||||
for row in density.index:
|
||||
@ -244,7 +238,12 @@ def heavyside_cdf(bins, targets):
|
||||
|
||||
|
||||
def crps(targets, densities):
|
||||
"""Continuous Ranked Probability Score"""
|
||||
'''
|
||||
Continuous Ranked Probability Score
|
||||
:param targets: a list with the target values
|
||||
:param densities: a list with pyFTS.probabil objectsistic.ProbabilityDistribution
|
||||
:return: float
|
||||
'''
|
||||
_crps = float(0.0)
|
||||
if isinstance(densities, pd.DataFrame):
|
||||
l = len(densities.columns)
|
||||
@ -269,7 +268,13 @@ def crps(targets, densities):
|
||||
|
||||
|
||||
def get_point_statistics(data, model, **kwargs):
|
||||
"""Condensate all measures for point forecasters"""
|
||||
'''
|
||||
Condensate all measures for point forecasters
|
||||
:param data: test data
|
||||
:param model: FTS model with point forecasting capability
|
||||
:param kwargs:
|
||||
:return: a list with the RMSE, SMAPE and U Statistic
|
||||
'''
|
||||
|
||||
steps_ahead = kwargs.get('steps_ahead',1)
|
||||
|
||||
@ -307,7 +312,14 @@ def get_point_statistics(data, model, **kwargs):
|
||||
|
||||
|
||||
def get_interval_statistics(data, model, **kwargs):
|
||||
"""Condensate all measures for point_to_interval forecasters"""
|
||||
'''
|
||||
Condensate all measures for point interval forecasters
|
||||
:param data: test data
|
||||
:param model: FTS model with interval forecasting capability
|
||||
:param kwargs:
|
||||
:return: a list with the sharpness, resolution, coverage, .05 pinball mean,
|
||||
.25 pinball mean, .75 pinball mean and .95 pinball mean.
|
||||
'''
|
||||
|
||||
steps_ahead = kwargs.get('steps_ahead', 1)
|
||||
|
||||
@ -341,6 +353,13 @@ def get_interval_statistics(data, model, **kwargs):
|
||||
|
||||
|
||||
def get_distribution_statistics(data, model, **kwargs):
|
||||
'''
|
||||
Get CRPS statistic and time for a forecasting model
|
||||
:param data: test data
|
||||
:param model: FTS model with probabilistic forecasting capability
|
||||
:param kwargs:
|
||||
:return: a list with the CRPS and execution time
|
||||
'''
|
||||
steps_ahead = kwargs.get('steps_ahead', 1)
|
||||
|
||||
ret = list()
|
||||
|
@ -31,7 +31,7 @@ def chi_squared(q, h):
|
||||
def compare_residuals(data, models):
|
||||
"""
|
||||
Compare residual's statistics of several models
|
||||
:param data:
|
||||
:param data: test data
|
||||
:param models:
|
||||
:return:
|
||||
"""
|
||||
|
@ -1,5 +1,5 @@
|
||||
"""
|
||||
Benchmark utility functions
|
||||
Facilities for pyFTS Benchmark module
|
||||
"""
|
||||
|
||||
import matplotlib as plt
|
||||
|
@ -51,22 +51,31 @@ def __pop(key, default, kwargs):
|
||||
def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
||||
"""
|
||||
Sliding window benchmarks for FTS point forecasters
|
||||
:param data:
|
||||
:param data: test data
|
||||
:param windowsize: size of sliding window
|
||||
:param train: percentual of sliding window data used to train the models
|
||||
:param models: FTS point forecasters
|
||||
:param partitioners: Universe of Discourse partitioner
|
||||
:param partitions: the max number of partitions on the Universe of Discourse
|
||||
:param max_order: the max order of the models (for high order models)
|
||||
:param transformation: data transformation
|
||||
:param indexer: seasonal indexer
|
||||
:param dump:
|
||||
:param benchmark_methods: Non FTS models to benchmark
|
||||
:param benchmark_methods_parameters: Non FTS models parameters
|
||||
:param save: save results
|
||||
:param file: file path to save the results
|
||||
:param sintetic: if true only the average and standard deviation of the results
|
||||
:return: DataFrame with the results
|
||||
:param kwargs: dict, optional arguments
|
||||
|
||||
:keyword
|
||||
models: FTS point forecasters
|
||||
partitioners: Universe of Discourse partitioner
|
||||
partitions: the max number of partitions on the Universe of Discourse
|
||||
max_order: the max order of the models (for high order models)
|
||||
type: the forecasting type, one of these values: point(default), interval or distribution.
|
||||
steps_ahead: The forecasting horizon, i. e., the number of steps ahead to forecast
|
||||
start: in the multi step forecasting, the index of the data where to start forecasting
|
||||
transformation: data transformation
|
||||
indexer: seasonal indexer
|
||||
progress: If true a progress bar will be displayed during the benchmarks
|
||||
distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster
|
||||
nodes: a list with the dispy cluster nodes addresses
|
||||
benchmark_methods: Non FTS models to benchmark
|
||||
benchmark_methods_parameters: Non FTS models parameters
|
||||
save: save results
|
||||
file: file path to save the results
|
||||
sintetic: if true only the average and standard deviation of the results
|
||||
|
||||
:return: DataFrame with the benchmark results
|
||||
"""
|
||||
distributed = __pop('distributed', False, kwargs)
|
||||
save = __pop('save', False, kwargs)
|
||||
@ -226,6 +235,12 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
||||
if job.status == dispy.DispyJob.Finished and job is not None:
|
||||
tmp = job()
|
||||
jobs2.append(tmp)
|
||||
print(tmp)
|
||||
else:
|
||||
print("status",job.status)
|
||||
print("result",job.result)
|
||||
print("stdout",job.stdout)
|
||||
print("stderr",job.exception)
|
||||
|
||||
jobs = deepcopy(jobs2)
|
||||
|
||||
@ -234,6 +249,8 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
||||
file = kwargs.get('file', None)
|
||||
sintetic = kwargs.get('sintetic', False)
|
||||
|
||||
print(jobs)
|
||||
|
||||
return synthesis_method(jobs, experiments, save, file, sintetic)
|
||||
|
||||
|
||||
|
@ -1,12 +1,17 @@
|
||||
"""
|
||||
This module implements functions for Fuzzy Logical Relationship generation
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from pyFTS.common import FuzzySet
|
||||
|
||||
"""
|
||||
This module implements functions for Fuzzy Logical Relationship generation
|
||||
"""
|
||||
|
||||
class FLR(object):
|
||||
"""Fuzzy Logical Relationship"""
|
||||
"""
|
||||
Fuzzy Logical Relationship
|
||||
|
||||
Represents a temporal transition of the fuzzy set LHS on time t for the fuzzy set RHS on time t+1.
|
||||
"""
|
||||
def __init__(self, LHS, RHS):
|
||||
"""
|
||||
Creates a Fuzzy Logical Relationship
|
||||
|
@ -1,3 +1,7 @@
|
||||
"""
|
||||
Common data transformation used on pre and post processing of the FTS
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
from pyFTS import *
|
||||
@ -5,7 +9,7 @@ from pyFTS import *
|
||||
|
||||
class Transformation(object):
|
||||
"""
|
||||
Data transformation used to pre and post processing of the FTS
|
||||
Data transformation used on pre and post processing of the FTS
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
@ -13,9 +17,23 @@ class Transformation(object):
|
||||
self.minimal_length = 1
|
||||
|
||||
def apply(self, data, param, **kwargs):
|
||||
"""
|
||||
Apply the transformation on input data
|
||||
:param data: input data
|
||||
:param param:
|
||||
:param kwargs:
|
||||
:return: numpy array with transformed data
|
||||
"""
|
||||
pass
|
||||
|
||||
def inverse(self,data, param, **kwargs):
|
||||
"""
|
||||
|
||||
:param data: transformed data
|
||||
:param param:
|
||||
:param kwargs:
|
||||
:return: numpy array with inverse transformed data
|
||||
"""
|
||||
pass
|
||||
|
||||
def __str__(self):
|
||||
@ -73,6 +91,11 @@ class Differential(Transformation):
|
||||
|
||||
|
||||
class Scale(Transformation):
|
||||
"""
|
||||
Scale data inside a interval [min, max]
|
||||
|
||||
|
||||
"""
|
||||
def __init__(self, min=0, max=1):
|
||||
super(Scale, self).__init__()
|
||||
self.data_max = None
|
||||
@ -130,6 +153,9 @@ class AdaptiveExpectation(Transformation):
|
||||
|
||||
|
||||
class BoxCox(Transformation):
|
||||
"""
|
||||
Box-Cox power transformation
|
||||
"""
|
||||
def __init__(self, plambda):
|
||||
super(BoxCox, self).__init__()
|
||||
self.plambda = plambda
|
||||
|
@ -1,3 +1,7 @@
|
||||
"""
|
||||
Common facilities for pyFTS
|
||||
"""
|
||||
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
import dill
|
||||
|
@ -2,6 +2,12 @@ import numpy as np
|
||||
|
||||
|
||||
class FLRG(object):
|
||||
"""
|
||||
Fuzzy Logical Relationship Group
|
||||
|
||||
Group a set of FLR's with the same LHS. Represents the temporal patterns for time t+1 (the RHS fuzzy sets)
|
||||
when the LHS pattern is identified on time t.
|
||||
"""
|
||||
|
||||
def __init__(self, order, **kwargs):
|
||||
self.LHS = None
|
||||
|
@ -120,7 +120,6 @@ class FTS(object):
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def forecast(self, data, **kwargs):
|
||||
"""
|
||||
Point forecast one step ahead
|
||||
|
@ -1,9 +1,17 @@
|
||||
"""
|
||||
Tree data structure
|
||||
"""
|
||||
|
||||
from pyFTS import *
|
||||
from functools import reduce
|
||||
import numpy as np
|
||||
|
||||
|
||||
class FLRGTreeNode:
|
||||
"""
|
||||
Tree node for
|
||||
"""
|
||||
|
||||
def __init__(self, value):
|
||||
self.isRoot = False
|
||||
self.children = []
|
||||
|
@ -4,11 +4,19 @@ import numpy as np
|
||||
|
||||
|
||||
def get_data():
|
||||
"""
|
||||
Get a simple univariate time series data.
|
||||
:return: numpy array
|
||||
"""
|
||||
dat = get_dataframe()
|
||||
dat = np.array(dat["Passengers"])
|
||||
return dat
|
||||
|
||||
def get_dataframe():
|
||||
"""
|
||||
Get the complete multivariate time series data.
|
||||
:return: Pandas DataFrame
|
||||
"""
|
||||
dat = common.get_dataframe('AirPassengers.csv',
|
||||
'https://github.com/petroniocandido/pyFTS/raw/8f20f3634aa6a8f58083bdcd1bbf93795e6ed767/pyFTS/data/AirPassengers.csv',
|
||||
sep=",")
|
||||
|
@ -4,6 +4,10 @@ import numpy as np
|
||||
|
||||
|
||||
def get_data():
|
||||
"""
|
||||
Get a simple univariate time series data.
|
||||
:return: numpy array
|
||||
"""
|
||||
dat = get_dataframe()
|
||||
dat = np.array(dat["Enrollments"])
|
||||
return dat
|
||||
|
@ -18,6 +18,10 @@ import pandas as pd
|
||||
|
||||
|
||||
def get_dataframe():
|
||||
"""
|
||||
Get the complete multivariate time series data.
|
||||
:return: Pandas DataFrame
|
||||
"""
|
||||
dat = common.get_dataframe('INMET.csv.bz2',
|
||||
'https://github.com/petroniocandido/pyFTS/raw/8f20f3634aa6a8f58083bdcd1bbf93795e6ed767/pyFTS/data/INMET.csv.bz2',
|
||||
sep=";", compression='bz2')
|
||||
|
@ -4,12 +4,21 @@ import numpy as np
|
||||
|
||||
|
||||
def get_data(field):
|
||||
"""
|
||||
Get a simple univariate time series data.
|
||||
:param field: the dataset field name to extract
|
||||
:return: numpy array
|
||||
"""
|
||||
dat = get_dataframe()
|
||||
dat = np.array(dat[field])
|
||||
return dat
|
||||
|
||||
|
||||
def get_dataframe():
|
||||
"""
|
||||
Get the complete multivariate time series data.
|
||||
:return: Pandas DataFrame
|
||||
"""
|
||||
dat = common.get_dataframe('NASDAQ.csv.bz2',
|
||||
'https://github.com/petroniocandido/pyFTS/raw/8f20f3634aa6a8f58083bdcd1bbf93795e6ed767/pyFTS/data/NASDAQ.csv.bz2',
|
||||
sep=";", compression='bz2')
|
||||
|
@ -4,12 +4,21 @@ import numpy as np
|
||||
|
||||
|
||||
def get_data(field):
|
||||
"""
|
||||
Get a simple univariate time series data.
|
||||
:param field: the dataset field name to extract
|
||||
:return: numpy array
|
||||
"""
|
||||
dat = get_dataframe()
|
||||
dat = np.array(dat[field])
|
||||
return dat
|
||||
|
||||
|
||||
def get_dataframe():
|
||||
"""
|
||||
Get the complete multivariate time series data.
|
||||
:return: Pandas DataFrame
|
||||
"""
|
||||
dat = common.get_dataframe('SONDA_BSB.csv.bz2',
|
||||
'https://github.com/petroniocandido/pyFTS/raw/8f20f3634aa6a8f58083bdcd1bbf93795e6ed767/pyFTS/data/SONDA_BSB.csv.bz2',
|
||||
sep=";", compression='bz2')
|
||||
|
@ -4,6 +4,10 @@ import numpy as np
|
||||
|
||||
|
||||
def get_dataframe():
|
||||
"""
|
||||
Get the complete multivariate time series data.
|
||||
:return: Pandas DataFrame
|
||||
"""
|
||||
dat = common.get_dataframe('SP500.csv.bz2',
|
||||
'https://github.com/petroniocandido/pyFTS/raw/8f20f3634aa6a8f58083bdcd1bbf93795e6ed767/pyFTS/data/SP500.csv.bz2',
|
||||
sep=",", compression='bz2')
|
||||
|
@ -4,12 +4,20 @@ import numpy as np
|
||||
|
||||
|
||||
def get_data():
|
||||
"""
|
||||
:param field: the dataset field name to extract
|
||||
:return: numpy array
|
||||
"""
|
||||
dat = get_dataframe()
|
||||
dat = np.array(dat["avg"])
|
||||
return dat
|
||||
|
||||
|
||||
def get_dataframe():
|
||||
"""
|
||||
Get the complete multivariate time series data.
|
||||
:return: Pandas DataFrame
|
||||
"""
|
||||
dat = common.get_dataframe('TAIEX.csv.bz2',
|
||||
'https://github.com/petroniocandido/pyFTS/raw/8f20f3634aa6a8f58083bdcd1bbf93795e6ed767/pyFTS/data/TAIEX.csv.bz2',
|
||||
sep=",", compression='bz2')
|
||||
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Module for pyFTS standard datasets facilities
|
||||
"""
|
@ -1,3 +1,7 @@
|
||||
"""
|
||||
Facilities to generate synthetic stochastic processes
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
@ -7,7 +8,16 @@ from urllib import request
|
||||
|
||||
|
||||
def get_dataframe(filename, url, sep=";", compression='infer'):
|
||||
#filename = pkg_resources.resource_filename('pyFTS', path)
|
||||
"""
|
||||
This method check if filename already exists, read the file and return its data.
|
||||
If the file don't already exists, it will be downloaded and decompressed.
|
||||
:param filename: dataset local filename
|
||||
:param url: dataset internet URL
|
||||
:param sep: CSV field separator
|
||||
:param compression: type of compression
|
||||
:return: Pandas dataset
|
||||
"""
|
||||
|
||||
tmp_file = Path(filename)
|
||||
|
||||
if tmp_file.is_file():
|
||||
|
@ -3,11 +3,19 @@ import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def get_data():
|
||||
"""
|
||||
Get a simple univariate time series data.
|
||||
:return: numpy array
|
||||
"""
|
||||
dat = get_dataframe()
|
||||
dat = np.array(dat["SUNACTIVITY"])
|
||||
return dat
|
||||
|
||||
def get_dataframe():
|
||||
"""
|
||||
Get the complete multivariate time series data.
|
||||
:return: Pandas DataFrame
|
||||
"""
|
||||
dat = common.get_dataframe('sunspots.csv',
|
||||
'https://github.com/petroniocandido/pyFTS/raw/8f20f3634aa6a8f58083bdcd1bbf93795e6ed767/pyFTS/data/sunspots.csv',
|
||||
sep=",")
|
||||
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Fuzzy Time Series methods
|
||||
"""
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Meta FTS that aggregates other FTS methods
|
||||
"""
|
@ -1,6 +1,13 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf8 -*-
|
||||
|
||||
"""
|
||||
High Order Interval Fuzzy Time Series
|
||||
|
||||
SILVA, Petrônio CL; SADAEI, Hossein Javedani; GUIMARÃES, Frederico Gadelha. Interval Forecasting with Fuzzy Time Series.
|
||||
In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016. p. 1-8.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from pyFTS.common import FuzzySet, FLR, fts, tree
|
||||
from pyFTS.models import hofts
|
||||
@ -9,9 +16,6 @@ from pyFTS.models import hofts
|
||||
class IntervalFTS(hofts.HighOrderFTS):
|
||||
"""
|
||||
High Order Interval Fuzzy Time Series
|
||||
|
||||
SILVA, Petrônio CL; SADAEI, Hossein Javedani; GUIMARÃES, Frederico Gadelha. Interval Forecasting with Fuzzy Time Series.
|
||||
In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016. p. 1-8.
|
||||
"""
|
||||
def __init__(self, name, **kwargs):
|
||||
super(IntervalFTS, self).__init__(name="IFTS " + name, **kwargs)
|
||||
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Multivariate Fuzzy Time Series methods
|
||||
"""
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Fuzzy time series with nonstationary fuzzy sets, for heteroskedastic data
|
||||
"""
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Jupyter notebooks with pyFTS usage examples
|
||||
"""
|
@ -1,3 +1,8 @@
|
||||
"""
|
||||
C. H. Cheng, R. J. Chang, and C. A. Yeh, “Entropy-based and trapezoidal fuzzification-based fuzzy time series approach for forecasting IT project cost,”
|
||||
Technol. Forecast. Social Change, vol. 73, no. 5, pp. 524–542, Jun. 2006.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import random as rnd
|
||||
@ -5,9 +10,6 @@ import functools, operator
|
||||
from pyFTS.common import FuzzySet, Membership
|
||||
from pyFTS.partitioners import partitioner
|
||||
|
||||
# C. H. Cheng, R. J. Chang, and C. A. Yeh, “Entropy-based and trapezoidal fuzzification-based fuzzy time series approach for forecasting IT project cost,”
|
||||
# Technol. Forecast. Social Change, vol. 73, no. 5, pp. 524–542, Jun. 2006.
|
||||
|
||||
|
||||
def splitBelow(data,threshold):
|
||||
return [k for k in data if k <= threshold]
|
||||
|
@ -1,3 +1,7 @@
|
||||
"""
|
||||
S. T. Li, Y. C. Cheng, and S. Y. Lin, “A FCM-based deterministic forecasting model for fuzzy time series,”
|
||||
Comput. Math. Appl., vol. 56, no. 12, pp. 3052–3063, Dec. 2008. DOI: 10.1016/j.camwa.2008.07.033.
|
||||
"""
|
||||
import numpy as np
|
||||
import math
|
||||
import random as rnd
|
||||
@ -6,11 +10,6 @@ from pyFTS.common import FuzzySet, Membership
|
||||
from pyFTS.partitioners import partitioner
|
||||
|
||||
|
||||
# import CMeans
|
||||
|
||||
# S. T. Li, Y. C. Cheng, and S. Y. Lin, “A FCM-based deterministic forecasting model for fuzzy time series,”
|
||||
# Comput. Math. Appl., vol. 56, no. 12, pp. 3052–3063, Dec. 2008. DOI: 10.1016/j.camwa.2008.07.033.
|
||||
|
||||
def fuzzy_distance(x, y):
|
||||
if isinstance(x, list):
|
||||
tmp = functools.reduce(operator.add, [(x[k] - y[k]) ** 2 for k in range(0, len(x))])
|
||||
|
@ -1,3 +1,5 @@
|
||||
"""Even Length Grid Partitioner"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import random as rnd
|
||||
|
@ -1,15 +1,16 @@
|
||||
"""
|
||||
K. H. Huarng, “Effective lengths of intervals to improve forecasting in fuzzy time series,”
|
||||
Fuzzy Sets Syst., vol. 123, no. 3, pp. 387–394, Nov. 2001.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import random as rnd
|
||||
import functools, operator
|
||||
from pyFTS.common import FuzzySet, Membership, Transformations
|
||||
|
||||
|
||||
# K. H. Huarng, “Effective lengths of intervals to improve forecasting in fuzzy time series,”
|
||||
# Fuzzy Sets Syst., vol. 123, no. 3, pp. 387–394, Nov. 2001.
|
||||
from pyFTS.partitioners import partitioner
|
||||
|
||||
|
||||
class HuarngPartitioner(partitioner.Partitioner):
|
||||
"""Huarng Empirical Partitioner"""
|
||||
def __init__(self, **kwargs):
|
||||
|
@ -1,3 +1,7 @@
|
||||
"""
|
||||
Facility methods for pyFTS partitioners module
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib as plt
|
||||
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Probability Distribution objects
|
||||
"""
|
@ -1,10 +1,12 @@
|
||||
from pyFTS.common import Transformations
|
||||
import numpy as np
|
||||
# -*- coding: utf8 -*-
|
||||
|
||||
"""
|
||||
Kernel Density Estimation
|
||||
"""
|
||||
|
||||
from pyFTS.common import Transformations
|
||||
import numpy as np
|
||||
|
||||
|
||||
class KernelSmoothing(object):
|
||||
"""Kernel Density Estimation"""
|
||||
|
@ -20,10 +20,10 @@ from pyFTS.benchmarks import benchmarks as bchmk
|
||||
from pyFTS.models import pwfts
|
||||
|
||||
#'''
|
||||
bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2, methods=[pwfts.ProbabilisticWeightedFTS],
|
||||
benchmark_models=False, orders=[1], partitions=[10], #np.arange(10,100,2),
|
||||
bchmk.sliding_window_benchmarks(dataset[:2000], 1000, train=0.8, inc=0.2, methods=[pwfts.ProbabilisticWeightedFTS],
|
||||
benchmark_models=False, orders=[1,2,3], partitions=[30,50,70], #np.arange(10,100,2),
|
||||
progress=False, type='distribution', steps_ahead=[1,4,7,10],
|
||||
#distributed=False, nodes=['192.168.0.106', '192.168.0.105', '192.168.0.110'],
|
||||
distributed=True, nodes=['192.168.0.102','192.168.0.106','192.168.0.110'],
|
||||
save=True, file="pwfts_taiex_distribution.csv")
|
||||
#'''
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user