Bugfix in models.multivariate.grid

This commit is contained in:
Petrônio Cândido 2019-04-09 22:39:17 -03:00
parent df047661b9
commit eac996b894
3 changed files with 67 additions and 11 deletions

View File

@ -43,7 +43,7 @@ class MultivariateFuzzySet(Composite.FuzzySet):
def fuzzyfy_instance(data_point, var, tuples=True): def fuzzyfy_instance(data_point, var, tuples=True):
fsets = var.partitioner(data_point, mode='sets', method='fuzzy', alpha_cut=var.alpha_cut) fsets = var.partitioner.fuzzyfy(data_point, mode='sets', method='fuzzy', alpha_cut=var.alpha_cut)
if tuples: if tuples:
return [(var.name, fs) for fs in fsets] return [(var.name, fs) for fs in fsets]
else: else:

View File

@ -14,17 +14,73 @@ from pyFTS.benchmarks import benchmarks as bchmk, Measures
from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei
from pyFTS.common import Transformations, Membership from pyFTS.common import Transformations, Membership
from pyFTS.data import TAIEX dataset = pd.read_csv('https://query.data.world/s/2bgegjggydd3venttp3zlosh3wpjqj', sep=';')
data = TAIEX.get_data() dataset['data'] = pd.to_datetime(dataset["data"], format='%Y-%m-%d %H:%M:%S')
fs = Grid.GridPartitioner(data=data, npart=23) train_mv = dataset.iloc[:24505]
test_mv = dataset.iloc[24505:]
from itertools import product
levels = ['VL', 'L', 'M', 'H', 'VH']
sublevels = [str(k) for k in np.arange(0, 7)]
names = []
for combination in product(*[levels, sublevels]):
names.append(combination[0] + combination[1])
print(names)
from pyFTS.models.multivariate import common, variable, mvfts
from pyFTS.models.seasonal import partitioner as seasonal
from pyFTS.models.seasonal.common import DateTime
sp = {'seasonality': DateTime.day_of_year , 'names': ['Jan','Feb','Mar','Apr','May',
'Jun','Jul', 'Aug','Sep','Oct',
'Nov','Dec']}
vmonth = variable.Variable("Month", data_label="data", partitioner=seasonal.TimeGridPartitioner, npart=12,
data=train_mv, partitioner_specific=sp)
sp = {'seasonality': DateTime.minute_of_day, 'names': [str(k)+'hs' for k in range(0,24)]}
vhour = variable.Variable("Hour", data_label="data", partitioner=seasonal.TimeGridPartitioner, npart=24,
data=train_mv, partitioner_specific=sp)
vavg = variable.Variable("Radiation", data_label="glo_avg", alias='rad',
partitioner=Grid.GridPartitioner, npart=35, partitioner_specific={'names': names},
data=train_mv)
from pyFTS.models.multivariate import mvfts, wmvfts, cmvfts, grid
parameters = [
{}, {},
{'order': 2, 'knn': 1},
{'order': 2, 'knn': 2},
{'order': 2, 'knn': 3},
]
for ct, method in enumerate([mvfts.MVFTS, wmvfts.WeightedMVFTS,
cmvfts.ClusteredMVFTS, cmvfts.ClusteredMVFTS, cmvfts.ClusteredMVFTS]):
if method != cmvfts.ClusteredMVFTS:
model = method(explanatory_variables=[vmonth, vhour, vavg], target_variable=vavg, **parameters[ct])
else:
fs = grid.GridCluster(explanatory_variables=[vmonth, vhour, vavg], target_variable=vavg)
model = method(explanatory_variables=[vmonth, vhour, vavg], target_variable=vavg, partitioner=fs,
**parameters[ct])
model.shortname += str(ct)
model.fit(train_mv)
forecasts = model.predict(test_mv.iloc[:100])
print(model.shortname, forecasts)
test = [2000, 5000, 5500, 12000]
for method in [yu.WeightedFTS, tsaur.MarkovWeightedFTS, song.ConventionalFTS, sadaei.ExponentialyWeightedFTS, ismailefendi.ImprovedWeightedFTS,
chen.ConventionalFTS, cheng.TrendWeightedFTS, hofts.HighOrderFTS, pwfts.ProbabilisticWeightedFTS]:
model = method(partitioner=fs)
model.fit(data)
print(model.forecast(test))