Conditional Variance FTS

This commit is contained in:
Petrônio Cândido 2017-10-20 16:04:56 -02:00
parent 2ea599fdb8
commit e9b86d7025
9 changed files with 444 additions and 134 deletions

View File

@ -167,7 +167,7 @@ def sharpness(forecasts):
def resolution(forecasts): def resolution(forecasts):
"""Resolution - Standard deviation of the intervals""" """Resolution - Standard deviation of the intervals"""
shp = sharpness(forecasts) shp = sharpness(forecasts)
tmp = [abs((i[1] - i[0]) - shp) for i in forecasts] tmp = [abs((i[1] - i[0]) - shp) for i in forecasts]
return np.mean(tmp) return np.mean(tmp)

View File

@ -70,6 +70,14 @@ def generateRecurrentFLRs(fuzzyData):
for r in rhs: for r in rhs:
tmp = FLR(l, r) tmp = FLR(l, r)
flrs.append(tmp) flrs.append(tmp)
elif isinstance(lhs, list) and not isinstance(rhs, list):
for l in lhs:
tmp = FLR(l, rhs)
flrs.append(tmp)
elif not isinstance(lhs, list) and isinstance(rhs, list):
for r in rhs:
tmp = FLR(lhs, r)
flrs.append(tmp)
else: else:
tmp = FLR(lhs,rhs) tmp = FLR(lhs,rhs)
flrs.append(tmp) flrs.append(tmp)

View File

@ -102,8 +102,40 @@ def getMaxMembershipFuzzySetIndex(inst, fuzzySets):
return np.argwhere(mv == max(mv))[0, 0] return np.argwhere(mv == max(mv))[0, 0]
def fuzzySeries(data, fuzzySets): def fuzzySeries(data, fuzzySets, method='maximum'):
fts = [] fts = []
for item in data: for item in data:
fts.append(getMaxMembershipFuzzySet(item, fuzzySets)) fts.append(getMaxMembershipFuzzySet(item, fuzzySets))
return fts return fts
def fuzzifySeries(data, fuzzySets, method='maximum'):
fts = []
for t, i in enumerate(data):
mv = np.array([fs.membership(i) for fs in fuzzySets])
if len(mv) == 0:
sets = check_bounds(i, fuzzySets)
else:
if method == 'fuzzy':
ix = np.ravel(np.argwhere(mv > 0.0))
sets = [fuzzySets[i] for i in ix]
elif method == 'maximum':
mx = max(mv)
ix = np.ravel(np.argwhere(mv == mx))
sets = fuzzySets[ix[0]]
fts.append(sets)
return fts
def check_bounds(data, sets):
if data < sets[0].get_lower():
return sets[0]
elif data > sets[-1].get_upper():
return sets[-1]
def check_bounds_index(data, sets):
if data < sets[0].get_lower():
return 0
elif data > sets[-1].get_upper():
return len(sets) -1

View File

@ -107,7 +107,7 @@ class FuzzySet(FS.FuzzySet):
self.perturbate_parameters(t) self.perturbate_parameters(t)
tmp = self.mf(x, self.perturbated_parameters[t]) tmp = self.mf(x, self.perturbated_parameters[str(t)])
if self.noise is not None: if self.noise is not None:
tmp += self.noise(t, self.noise_params) tmp += self.noise(t, self.noise_params)
@ -115,16 +115,20 @@ class FuzzySet(FS.FuzzySet):
return tmp return tmp
def perturbate_parameters(self, t): def perturbate_parameters(self, t):
if t not in self.perturbated_parameters: if str(t) not in self.perturbated_parameters:
param = self.parameters param = self.parameters
param = self.perform_location(t, param) if isinstance(t, (list, set)):
param = self.perform_width(t, param) param = self.perform_location(t[0], param)
self.perturbated_parameters[t] = param param = self.perform_width(t[1], param)
else:
param = self.perform_location(t, param)
param = self.perform_width(t, param)
self.perturbated_parameters[str(t)] = param
def get_midpoint(self, t): def get_midpoint(self, t):
self.perturbate_parameters(t) self.perturbate_parameters(t)
param = self.perturbated_parameters[t] param = self.perturbated_parameters[str(t)]
if self.mf == Membership.gaussmf: if self.mf == Membership.gaussmf:
return param[0] return param[0]
@ -140,7 +144,7 @@ class FuzzySet(FS.FuzzySet):
def get_lower(self, t): def get_lower(self, t):
self.perturbate_parameters(t) self.perturbate_parameters(t)
param = self.perturbated_parameters[t] param = self.perturbated_parameters[str(t)]
if self.mf == Membership.gaussmf: if self.mf == Membership.gaussmf:
return param[0] - 3*param[1] return param[0] - 3*param[1]
@ -156,7 +160,7 @@ class FuzzySet(FS.FuzzySet):
def get_upper(self, t): def get_upper(self, t):
self.perturbate_parameters(t) self.perturbate_parameters(t)
param = self.perturbated_parameters[t] param = self.perturbated_parameters[str(t)]
if self.mf == Membership.gaussmf: if self.mf == Membership.gaussmf:
return param[0] + 3*param[1] return param[0] + 3*param[1]
@ -183,105 +187,6 @@ class FuzzySet(FS.FuzzySet):
return self.name + ": " + str(self.mf.__name__) + tmp return self.name + ": " + str(self.mf.__name__) + tmp
class PolynomialNonStationaryPartitioner(partitioner.Partitioner):
"""
Non Stationary Universe of Discourse Partitioner
"""
def __init__(self, data, part, **kwargs):
""""""
super(PolynomialNonStationaryPartitioner, self).__init__(name=part.name, data=data, npart=part.partitions,
func=part.membership_function, names=part.setnames,
prefix=part.prefix, transformation=part.transformation,
indexer=part.indexer)
self.sets = []
loc_params, wid_params = self.get_polynomial_perturbations(data, **kwargs)
for ct, set in enumerate(part.sets):
loc_roots = np.roots(loc_params[ct])[0]
wid_roots = np.roots(wid_params[ct])[0]
tmp = FuzzySet(set.name, set.mf, set.parameters,
location=perturbation.polynomial,
location_params=loc_params[ct],
location_roots=loc_roots, #**kwargs)
width=perturbation.polynomial,
width_params=wid_params[ct],
width_roots=wid_roots, **kwargs)
self.sets.append(tmp)
def poly_width(self, par1, par2, rng, deg):
a = np.polyval(par1, rng)
b = np.polyval(par2, rng)
diff = [b[k] - a[k] for k in rng]
tmp = np.polyfit(rng, diff, deg=deg)
return tmp
def scale_up(self,x,pct):
if x > 0: return x*(1+pct)
else: return x*pct
def scale_down(self,x,pct):
if x > 0: return x*pct
else: return x*(1+pct)
def get_polynomial_perturbations(self, data, **kwargs):
w = kwargs.get("window_size", int(len(data) / 5))
deg = kwargs.get("degree", 2)
xmax = [data[0]]
tmax = [0]
xmin = [data[0]]
tmin = [0]
l = len(data)
for i in np.arange(0, l, w):
sample = data[i:i + w]
tx = max(sample)
xmax.append(tx)
tmax.append(np.ravel(np.argwhere(data == tx)).tolist()[0])
tn = min(sample)
xmin.append(tn)
tmin.append(np.ravel(np.argwhere(data == tn)).tolist()[0])
cmax = np.polyfit(tmax, xmax, deg=deg)
cmin = np.polyfit(tmin, xmin, deg=deg)
cmed = []
for d in np.arange(0, deg + 1):
cmed.append(np.linspace(cmin[d], cmax[d], self.partitions)[1:self.partitions - 1])
loc_params = [cmin.tolist()]
for i in np.arange(0, self.partitions - 2):
tmp = [cmed[k][i] for k in np.arange(0, deg + 1)]
loc_params.append(tmp)
loc_params.append(cmax.tolist())
rng = np.arange(0, l)
clen = []
for i in np.arange(1, self.partitions-1):
tmp = self.poly_width(loc_params[i - 1], loc_params[i + 1], rng, deg)
clen.append(tmp)
tmp = self.poly_width(loc_params[0], loc_params[1], rng, deg)
clen.insert(0, tmp)
tmp = self.poly_width(loc_params[self.partitions-2], loc_params[self.partitions-1], rng, deg)
clen.append(tmp)
tmp = (loc_params, clen)
return tmp
def build(self, data):
pass
def fuzzify(inst, t, fuzzySets): def fuzzify(inst, t, fuzzySets):
""" """
Calculate the membership values for a data point given nonstationary fuzzy sets Calculate the membership values for a data point given nonstationary fuzzy sets
@ -299,10 +204,10 @@ def fuzzify(inst, t, fuzzySets):
return ret return ret
def fuzzySeries(data, fuzzySets, window_size=1, method='fuzzy'): def fuzzySeries(data, fuzzySets, window_size=1, method='fuzzy', const_t= None):
fts = [] fts = []
for t, i in enumerate(data): for t, i in enumerate(data):
tdisp = window_index(t, window_size) tdisp = window_index(t, window_size) if const_t is None else const_t
mv = np.array([fs.membership(i, tdisp) for fs in fuzzySets]) mv = np.array([fs.membership(i, tdisp) for fs in fuzzySets])
if len(mv) == 0: if len(mv) == 0:
sets = [check_bounds(i, fuzzySets, tdisp)] sets = [check_bounds(i, fuzzySets, tdisp)]
@ -318,6 +223,8 @@ def fuzzySeries(data, fuzzySets, window_size=1, method='fuzzy'):
def window_index(t, window_size): def window_index(t, window_size):
if isinstance(t, (list, set)):
return t
return t - (t % window_size) return t - (t % window_size)

View File

@ -0,0 +1,180 @@
import numpy as np
from pyFTS import fts, flrg, chen
from pyFTS.nonstationary import common, perturbation, nsfts
from pyFTS.common import Transformations, FuzzySet, FLR
class ConditionalVarianceFTS(chen.ConventionalFTS):
def __init__(self, name, **kwargs):
super(ConditionalVarianceFTS, self).__init__("CVFTS " + name, **kwargs)
self.name = "Conditional Variance FTS"
self.detail = ""
self.flrgs = {}
#self.appendTransformation(Transformations.Differential(1))
if self.partitioner is None:
self.min_tx = None
self.max_tx = None
else:
self.min_tx = self.partitioner.min
self.max_tx = self.partitioner.max
self.appendTransformation(self.partitioner.transformation)
self.min_stack = [0,0,0]
self.max_stack = [0,0,0]
def train(self, data, sets = None, order=1,parameters=None):
if sets is not None:
self.sets = sets
else:
self.sets = self.partitioner.sets
ndata = self.doTransformations(data)
self.min_tx = min(ndata)
self.max_tx = max(ndata)
tmpdata = common.fuzzySeries(ndata, self.sets, method='fuzzy', const_t=0)
flrs = FLR.generateNonRecurrentFLRs(tmpdata)
self.flrgs = self.generate_flrg(flrs)
def generate_flrg(self, flrs, **kwargs):
flrgs = {}
for flr in flrs:
if flr.LHS.name in flrgs:
flrgs[flr.LHS.name].append(flr.RHS)
else:
flrgs[flr.LHS.name] = nsfts.ConventionalNonStationaryFLRG(flr.LHS)
flrgs[flr.LHS.name].append(flr.RHS)
return flrgs
def _smooth(self, a):
return .1 * a[0] + .3 * a[1] + .6 * a[2]
def perturbation_factors(self, data):
_max = 0
_min = 0
if data < self.min_tx:
_min = data - self.min_tx if data < 0 else self.min_tx - data
elif data > self.max_tx:
_max = data - self.max_tx if data > 0 else self.max_tx - data
self.min_stack.pop(2)
self.min_stack.insert(0,_min)
_min = min(self.min_stack)
self.max_stack.pop(2)
self.max_stack.insert(0, _max)
_max = max(self.max_stack)
location = np.linspace(_min, _max, self.partitioner.partitions)
scale = [abs(location[0] - location[2])]
scale.extend([abs(location[k-1] - location[k+1]) for k in np.arange(1,self.partitioner.partitions-1)])
scale.append(abs(location[-1] - location[-3]))
perturb = [[location[k], scale[k]] for k in np.arange(0, self.partitioner.partitions)]
return perturb
def _affected_sets(self, sample, perturb):
affected_sets = [[ct, set.membership(sample, perturb[ct])]
for ct, set in enumerate(self.sets)
if set.membership(sample, perturb[ct]) > 0.0]
if len(affected_sets) == 0:
if sample < self.sets[0].get_lower(perturb[0]):
affected_sets.append([0, 1])
elif sample < self.sets[-1].get_lower(perturb[-1]):
affected_sets.append([len(self.sets) - 1, 1])
return affected_sets
def forecast(self, data, **kwargs):
ndata = np.array(self.doTransformations(data))
l = len(ndata)
ret = []
for k in np.arange(0, l):
sample = ndata[k]
perturb = self.perturbation_factors(sample)
affected_sets = self._affected_sets(sample, perturb)
tmp = []
if len(affected_sets) == 1:
ix = affected_sets[0][0]
aset = self.sets[ix]
if aset.name in self.flrgs:
tmp.append(self.flrgs[aset.name].get_midpoint(perturb[ix]))
else:
print('naive')
tmp.append(aset.get_midpoint(perturb[ix]))
else:
for aset in affected_sets:
ix = aset[0]
fs = self.sets[ix]
tdisp = perturb[ix]
if fs.name in self.flrgs:
tmp.append(self.flrgs[fs.name].get_midpoint(tdisp) * aset[1])
else:
tmp.append(fs.get_midpoint(tdisp) * aset[1])
pto = sum(tmp)
ret.append(pto)
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret
def forecastInterval(self, data, **kwargs):
ndata = np.array(self.doTransformations(data))
l = len(ndata)
ret = []
for k in np.arange(0, l):
sample = ndata[k]
perturb = self.perturbation_factors(sample)
affected_sets = self._affected_sets(sample, perturb)
upper = []
lower = []
if len(affected_sets) == 1:
ix = affected_sets[0][0]
aset = self.sets[ix]
if aset.name in self.flrgs:
lower.append(self.flrgs[aset.name].get_lower(perturb[ix]))
upper.append(self.flrgs[aset.name].get_upper(perturb[ix]))
else:
lower.append(aset.get_lower(perturb[ix]))
upper.append(aset.get_upper(perturb[ix]))
else:
for aset in affected_sets:
ix = aset[0]
fs = self.sets[ix]
tdisp = perturb[ix]
if fs.name in self.flrgs:
lower.append(self.flrgs[fs.name].get_lower(tdisp) * aset[1])
upper.append(self.flrgs[fs.name].get_upper(tdisp) * aset[1])
else:
lower.append(fs.get_lower(tdisp) * aset[1])
upper.append(fs.get_upper(tdisp) * aset[1])
itvl = [sum(lower), sum(upper)]
ret.append(itvl)
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret

View File

@ -23,7 +23,7 @@ class NonStationaryFLRG(flrg.FLRG):
def get_midpoint(self, t, window_size=1): def get_midpoint(self, t, window_size=1):
if len(self.RHS) > 0: if len(self.RHS) > 0:
if isinstance(self.RHS, (list,set)): if isinstance(self.RHS, (list, set)):
tmp = [r.get_midpoint(common.window_index(t, window_size)) for r in self.RHS] tmp = [r.get_midpoint(common.window_index(t, window_size)) for r in self.RHS]
elif isinstance(self.RHS, dict): elif isinstance(self.RHS, dict):
tmp = [self.RHS[r].get_midpoint(common.window_index(t, window_size)) for r in self.RHS.keys()] tmp = [self.RHS[r].get_midpoint(common.window_index(t, window_size)) for r in self.RHS.keys()]

View File

@ -0,0 +1,122 @@
import numpy as np
from pyFTS.partitioners import partitioner
from pyFTS.nonstationary import common, perturbation
class PolynomialNonStationaryPartitioner(partitioner.Partitioner):
"""
Non Stationary Universe of Discourse Partitioner
"""
def __init__(self, data, part, **kwargs):
""""""
super(PolynomialNonStationaryPartitioner, self).__init__(name=part.name, data=data, npart=part.partitions,
func=part.membership_function, names=part.setnames,
prefix=part.prefix, transformation=part.transformation,
indexer=part.indexer)
self.sets = []
loc_params, wid_params = self.get_polynomial_perturbations(data, **kwargs)
for ct, set in enumerate(part.sets):
loc_roots = np.roots(loc_params[ct])[0]
wid_roots = np.roots(wid_params[ct])[0]
tmp = common.FuzzySet(set.name, set.mf, set.parameters,
location=perturbation.polynomial,
location_params=loc_params[ct],
location_roots=loc_roots, #**kwargs)
width=perturbation.polynomial,
width_params=wid_params[ct],
width_roots=wid_roots, **kwargs)
self.sets.append(tmp)
def poly_width(self, par1, par2, rng, deg):
a = np.polyval(par1, rng)
b = np.polyval(par2, rng)
diff = [b[k] - a[k] for k in rng]
tmp = np.polyfit(rng, diff, deg=deg)
return tmp
def scale_up(self,x,pct):
if x > 0: return x*(1+pct)
else: return x*pct
def scale_down(self,x,pct):
if x > 0: return x*pct
else: return x*(1+pct)
def get_polynomial_perturbations(self, data, **kwargs):
w = kwargs.get("window_size", int(len(data) / 5))
deg = kwargs.get("degree", 2)
xmax = [data[0]]
tmax = [0]
xmin = [data[0]]
tmin = [0]
l = len(data)
for i in np.arange(0, l, w):
sample = data[i:i + w]
tx = max(sample)
xmax.append(tx)
tmax.append(np.ravel(np.argwhere(data == tx)).tolist()[0])
tn = min(sample)
xmin.append(tn)
tmin.append(np.ravel(np.argwhere(data == tn)).tolist()[0])
cmax = np.polyfit(tmax, xmax, deg=deg)
cmin = np.polyfit(tmin, xmin, deg=deg)
cmed = []
for d in np.arange(0, deg + 1):
cmed.append(np.linspace(cmin[d], cmax[d], self.partitions)[1:self.partitions - 1])
loc_params = [cmin.tolist()]
for i in np.arange(0, self.partitions - 2):
tmp = [cmed[k][i] for k in np.arange(0, deg + 1)]
loc_params.append(tmp)
loc_params.append(cmax.tolist())
rng = np.arange(0, l)
clen = []
for i in np.arange(1, self.partitions-1):
tmp = self.poly_width(loc_params[i - 1], loc_params[i + 1], rng, deg)
clen.append(tmp)
tmp = self.poly_width(loc_params[0], loc_params[1], rng, deg)
clen.insert(0, tmp)
tmp = self.poly_width(loc_params[self.partitions-2], loc_params[self.partitions-1], rng, deg)
clen.append(tmp)
tmp = (loc_params, clen)
return tmp
def build(self, data):
pass
class ConstantNonStationaryPartitioner(partitioner.Partitioner):
"""
Non Stationary Universe of Discourse Partitioner
"""
def __init__(self, data, part, **kwargs):
""""""
super(ConstantNonStationaryPartitioner, self).__init__(name=part.name, data=data, npart=part.partitions,
func=part.membership_function, names=part.setnames,
prefix=part.prefix, transformation=part.transformation,
indexer=part.indexer)
self.sets = []
for set in part.sets:
tmp = common.FuzzySet(set.name, set.mf, set.parameters, **kwargs)
self.sets.append(tmp)

View File

@ -19,7 +19,7 @@ def plot_sets(sets, start=0, end=10, step=1, tam=[5, 5], colors=None,
for t in range: for t in range:
tdisp = t - (t % window_size) tdisp = t - (t % window_size)
set.membership(0, tdisp) set.membership(0, tdisp)
param = set.perturbated_parameters[tdisp] param = set.perturbated_parameters[str(tdisp)]
if set.mf == Membership.trimf: if set.mf == Membership.trimf:
if t == start: if t == start:
@ -34,7 +34,7 @@ def plot_sets(sets, start=0, end=10, step=1, tam=[5, 5], colors=None,
for t in range: for t in range:
tdisp = t - (t % window_size) tdisp = t - (t % window_size)
set.membership(0, tdisp) set.membership(0, tdisp)
param = set.perturbated_parameters[tdisp] param = set.perturbated_parameters[str(tdisp)]
tmp.append(np.polyval(param, tdisp)) tmp.append(np.polyval(param, tdisp))
axes.plot(range, tmp, ls="--", c="blue") axes.plot(range, tmp, ls="--", c="blue")
@ -51,3 +51,41 @@ def plot_sets(sets, start=0, end=10, step=1, tam=[5, 5], colors=None,
plt.tight_layout() plt.tight_layout()
Util.showAndSaveImage(fig, file, save) Util.showAndSaveImage(fig, file, save)
def plot_sets_conditional(model, data, start=0, end=10, step=1, tam=[5, 5], colors=None,
save=False, file=None, axes=None):
range = np.arange(start,end,step)
ticks = []
if axes is None:
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=tam)
for ct, set in enumerate(model.sets):
for t in range:
tdisp = model.perturbation_factors(data[t])
set.perturbate_parameters(tdisp[ct])
param = set.perturbated_parameters[str(tdisp[ct])]
if set.mf == Membership.trimf:
if t == start:
line = axes.plot([t, t+1, t], param, label=set.name)
set.metadata['color'] = line[0].get_color()
else:
axes.plot([t, t + 1, t], param,c=set.metadata['color'])
ticks.extend(["t+"+str(t),""])
axes.set_ylabel("Universe of Discourse")
axes.set_xlabel("Time")
plt.xticks([k for k in range], ticks, rotation='vertical')
handles0, labels0 = axes.get_legend_handles_labels()
lgd = axes.legend(handles0, labels0, loc=2, bbox_to_anchor=(1, 1))
if data is not None:
axes.plot(np.arange(start, start + len(data), 1), data,c="black")
plt.tight_layout()
Util.showAndSaveImage(fig, file, save)

View File

@ -1,13 +1,14 @@
import os import os
import numpy as np import numpy as np
from pyFTS.common import Membership from pyFTS.common import Membership, Transformations
from pyFTS.nonstationary import common,perturbation,util,nsfts, honsfts from pyFTS.nonstationary import common,perturbation, partitioners, util,nsfts, honsfts, cvfts
from pyFTS.partitioners import Grid from pyFTS.partitioners import Grid
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
os.chdir("/home/petronio/Dropbox/Doutorado/Codigos/") os.chdir("/home/petronio/Dropbox/Doutorado/Codigos/")
""" diff = Transformations.Differential(1)
def generate_heteroskedastic_linear(mu_ini, sigma_ini, mu_inc, sigma_inc, it=10, num=35): def generate_heteroskedastic_linear(mu_ini, sigma_ini, mu_inc, sigma_inc, it=10, num=35):
mu = mu_ini mu = mu_ini
sigma = sigma_ini sigma = sigma_ini
@ -19,34 +20,55 @@ def generate_heteroskedastic_linear(mu_ini, sigma_ini, mu_inc, sigma_inc, it=10,
return ret return ret
lmv1 = generate_heteroskedastic_linear(1,0.1,1,0.3) #lmv1 = generate_heteroskedastic_linear(1,0.1,1,0.3)
#lmv1 = generate_heteroskedastic_linear(5,0.1,0,0.2) lmv1 = generate_heteroskedastic_linear(5,0.1,0,0.2)
#lmv1 = generate_heteroskedastic_linear(1,0.3,1,0) #lmv1 = generate_heteroskedastic_linear(1,0.3,1,0)
ns = 5 #number of fuzzy sets lmv1 = diff.apply(lmv1)
ns = 10 #number of fuzzy sets
ts = 200 ts = 200
train = lmv1[:ts] train = lmv1[:ts]
test = lmv1[ts:] test = lmv1[ts:]
w = 25 w = 25
deg = 4 deg = 4
tmp_fs = Grid.GridPartitioner(train[:35], 10) tmp_fs = Grid.GridPartitioner(train, 10)
fs = common.PolynomialNonStationaryPartitioner(train, tmp_fs, window_size=35, degree=1) #fs = partitioners.PolynomialNonStationaryPartitioner(train, tmp_fs, window_size=35, degree=1)
fs = partitioners.ConstantNonStationaryPartitioner(train, tmp_fs,
nsfts1 = nsfts.NonStationaryFTS("", partitioner=fs) location=perturbation.polynomial,
location_params=[1,0],
nsfts1.train(train[:100]) location_roots=0,
width=perturbation.polynomial,
print(fs) width_params=[1,0],
width_roots=0)
print(nsfts1)
tmp = nsfts1.forecast(test[:10], time_displacement=200)
print(tmp)
""" """
perturb = [0.5, 0.25]
for i in [0,1]:
print(fs.sets[i].parameters)
fs.sets[i].perturbate_parameters(perturb[i])
for i in [0,1]:
print(fs.sets[i].perturbated_parameters[perturb[i]])
"""
#nsfts1 = nsfts.NonStationaryFTS("", partitioner=fs)
nsfts1 = cvfts.ConditionalVarianceFTS("", partitioner=fs)
nsfts1.train(train)
#print(fs)
#print(nsfts1)
#tmp = nsfts1.forecast(test[50:60])
#print(tmp)
#print(test[50:60])
util.plot_sets_conditional(nsfts1, test, end=150, step=1,tam=[10, 5])
print('')
"""
passengers = pd.read_csv("DataSets/AirPassengers.csv", sep=",") passengers = pd.read_csv("DataSets/AirPassengers.csv", sep=",")
passengers = np.array(passengers["Passengers"]) passengers = np.array(passengers["Passengers"])
@ -83,6 +105,7 @@ print([k[1] for k in tmpi])
# window_size=ws, only_lines=False) # window_size=ws, only_lines=False)
#fig, axes = plt.subplots(nrows=1, ncols=1, figsize=[15,5]) #fig, axes = plt.subplots(nrows=1, ncols=1, figsize=[15,5])
"""
""" """
axes.plot(testp, label="Original") axes.plot(testp, label="Original")