- Deep refactor on project folders
This commit is contained in:
parent
6e4df0ce33
commit
e4838693a6
@ -5,8 +5,7 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from statsmodels.tsa.arima_model import ARIMA as stats_arima
|
from statsmodels.tsa.arima_model import ARIMA as stats_arima
|
||||||
import scipy.stats as st
|
import scipy.stats as st
|
||||||
from pyFTS import fts
|
from pyFTS.common import SortedCollection, fts
|
||||||
from pyFTS.common import SortedCollection
|
|
||||||
from pyFTS.probabilistic import ProbabilityDistribution
|
from pyFTS.probabilistic import ProbabilityDistribution
|
||||||
|
|
||||||
|
|
||||||
|
@ -13,14 +13,14 @@ import matplotlib.cm as cmx
|
|||||||
import matplotlib.colors as pltcolors
|
import matplotlib.colors as pltcolors
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
#from mpl_toolkits.mplot3d import Axes3D
|
#from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
from pyFTS.probabilistic import ProbabilityDistribution
|
from pyFTS.probabilistic import ProbabilityDistribution
|
||||||
from pyFTS import song, chen, yu, ismailefendi, sadaei, hofts, pwfts, ifts, cheng, ensemble, hwang
|
from pyFTS.models import song, chen, yu, ismailefendi, sadaei, hofts, pwfts, ifts, cheng, hwang
|
||||||
|
from pyFTS.models.ensemble import ensemble
|
||||||
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, quantreg
|
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, quantreg
|
||||||
from pyFTS.benchmarks import Util as bUtil
|
from pyFTS.benchmarks import Util as bUtil
|
||||||
from pyFTS.common import Transformations, Util
|
from pyFTS.common import Util
|
||||||
# from sklearn.cross_validation import KFold
|
# from sklearn.cross_validation import KFold
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
from matplotlib import rc
|
from matplotlib import rc
|
||||||
@ -817,7 +817,6 @@ def plot_compared_intervals_ahead(original, models, colors, distributions, time_
|
|||||||
def plot_density_rectange(ax, cmap, density, fig, resolution, time_from, time_to):
|
def plot_density_rectange(ax, cmap, density, fig, resolution, time_from, time_to):
|
||||||
from matplotlib.patches import Rectangle
|
from matplotlib.patches import Rectangle
|
||||||
from matplotlib.collections import PatchCollection
|
from matplotlib.collections import PatchCollection
|
||||||
from matplotlib.colorbar import ColorbarPatch
|
|
||||||
patches = []
|
patches = []
|
||||||
colors = []
|
colors = []
|
||||||
for x in density.index:
|
for x in density.index:
|
||||||
@ -840,7 +839,6 @@ from pyFTS.common import Transformations
|
|||||||
def plot_probabilitydistribution_density(ax, cmap, probabilitydist, fig, time_from):
|
def plot_probabilitydistribution_density(ax, cmap, probabilitydist, fig, time_from):
|
||||||
from matplotlib.patches import Rectangle
|
from matplotlib.patches import Rectangle
|
||||||
from matplotlib.collections import PatchCollection
|
from matplotlib.collections import PatchCollection
|
||||||
from matplotlib.colorbar import ColorbarPatch
|
|
||||||
patches = []
|
patches = []
|
||||||
colors = []
|
colors = []
|
||||||
for ct, dt in enumerate(probabilitydist):
|
for ct, dt in enumerate(probabilitydist):
|
||||||
|
@ -8,13 +8,12 @@ python3 /usr/local/bin/dispynode.py -i [local IP] -d
|
|||||||
|
|
||||||
import datetime
|
import datetime
|
||||||
import time
|
import time
|
||||||
from copy import deepcopy
|
|
||||||
|
|
||||||
import dispy
|
import dispy
|
||||||
import dispy.httpd
|
import dispy.httpd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from pyFTS.benchmarks import benchmarks, Util as bUtil, naive, quantreg, arima
|
from pyFTS.benchmarks import benchmarks, Util as bUtil, quantreg, arima
|
||||||
from pyFTS.common import Util
|
from pyFTS.common import Util
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
|
|
||||||
@ -32,7 +31,8 @@ def run_point(mfts, partitioner, train_data, test_data, window_key=None, transfo
|
|||||||
:return: a dictionary with the benchmark results
|
:return: a dictionary with the benchmark results
|
||||||
"""
|
"""
|
||||||
import time
|
import time
|
||||||
from pyFTS import yu,chen,hofts,ifts,pwfts,ismailefendi,sadaei, song, cheng, hwang
|
from pyFTS import yu, hofts, pwfts,ismailefendi,sadaei, song, cheng, hwang
|
||||||
|
from pyFTS.models import chen
|
||||||
from pyFTS.partitioners import Grid, Entropy, FCM
|
from pyFTS.partitioners import Grid, Entropy, FCM
|
||||||
from pyFTS.benchmarks import Measures, naive, arima, quantreg
|
from pyFTS.benchmarks import Measures, naive, arima, quantreg
|
||||||
from pyFTS.common import Transformations
|
from pyFTS.common import Transformations
|
||||||
@ -424,9 +424,10 @@ def run_ahead(mfts, partitioner, train_data, test_data, steps, resolution, windo
|
|||||||
"""
|
"""
|
||||||
import time
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS import hofts, ifts, pwfts, ensemble
|
from pyFTS import hofts, ifts, pwfts
|
||||||
|
from pyFTS.models import ensemble
|
||||||
from pyFTS.partitioners import Grid, Entropy, FCM
|
from pyFTS.partitioners import Grid, Entropy, FCM
|
||||||
from pyFTS.benchmarks import Measures, arima, quantreg
|
from pyFTS.benchmarks import Measures, arima
|
||||||
from pyFTS.models.seasonal import SeasonalIndexer
|
from pyFTS.models.seasonal import SeasonalIndexer
|
||||||
|
|
||||||
tmp = [hofts.HighOrderFTS, ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS, arima.ARIMA, ensemble.AllMethodEnsembleFTS]
|
tmp = [hofts.HighOrderFTS, ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS, arima.ARIMA, ensemble.AllMethodEnsembleFTS]
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
# -*- coding: utf8 -*-
|
# -*- coding: utf8 -*-
|
||||||
|
|
||||||
from pyFTS import fts
|
from pyFTS.common import fts
|
||||||
|
|
||||||
|
|
||||||
class Naive(fts.FTS):
|
class Naive(fts.FTS):
|
||||||
|
@ -5,8 +5,7 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from statsmodels.regression.quantile_regression import QuantReg
|
from statsmodels.regression.quantile_regression import QuantReg
|
||||||
from statsmodels.tsa.tsatools import lagmat
|
from statsmodels.tsa.tsatools import lagmat
|
||||||
from pyFTS import fts
|
from pyFTS.common import SortedCollection, fts
|
||||||
from pyFTS.common import SortedCollection
|
|
||||||
from pyFTS.probabilistic import ProbabilityDistribution
|
from pyFTS.probabilistic import ProbabilityDistribution
|
||||||
|
|
||||||
class QuantileRegression(fts.FTS):
|
class QuantileRegression(fts.FTS):
|
||||||
|
@ -5,8 +5,7 @@ S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet, FLR
|
from pyFTS.common import FuzzySet, FLR, fts, flrg
|
||||||
from pyFTS import fts,flrg
|
|
||||||
|
|
||||||
|
|
||||||
class ConventionalFLRG(flrg.FLRG):
|
class ConventionalFLRG(flrg.FLRG):
|
@ -6,8 +6,8 @@ Expert Syst. Appl., vol. 36, no. 2, pp. 1826–1832, 2009.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet, FLR, fts
|
||||||
from pyFTS import fts, yu
|
from pyFTS.models import yu
|
||||||
|
|
||||||
|
|
||||||
class TrendWeightedFLRG(yu.WeightedFLRG):
|
class TrendWeightedFLRG(yu.WeightedFLRG):
|
@ -3,16 +3,10 @@
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import math
|
from pyFTS.common import SortedCollection, fts, tree
|
||||||
from operator import itemgetter
|
from pyFTS.models import chen, cheng, hofts, hwang, ismailefendi, sadaei, song, yu
|
||||||
from pyFTS.common import FLR, FuzzySet, SortedCollection
|
|
||||||
from pyFTS import fts, chen, cheng, hofts, hwang, ismailefendi, sadaei, song, yu
|
|
||||||
from pyFTS.benchmarks import arima, quantreg
|
|
||||||
from pyFTS.common import Transformations
|
|
||||||
import scipy.stats as st
|
import scipy.stats as st
|
||||||
from pyFTS import tree
|
|
||||||
from pyFTS.seasonal import sfts, msfts
|
|
||||||
from pyFTS.probabilistic import ProbabilityDistribution, kde
|
|
||||||
|
|
||||||
def sampler(data, quantiles):
|
def sampler(data, quantiles):
|
||||||
ret = []
|
ret = []
|
@ -2,17 +2,10 @@
|
|||||||
# -*- coding: utf8 -*-
|
# -*- coding: utf8 -*-
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
from pyFTS.common import Util as cUtil
|
||||||
import math
|
from pyFTS.models.ensemble import ensemble
|
||||||
from operator import itemgetter
|
from pyFTS.models.seasonal import cmsfts
|
||||||
from pyFTS.common import FLR, FuzzySet, SortedCollection
|
from pyFTS.probabilistic import ProbabilityDistribution
|
||||||
from pyFTS import fts, chen, cheng, hofts, hwang, ismailefendi, sadaei, song, yu, sfts
|
|
||||||
from pyFTS.benchmarks import arima, quantreg
|
|
||||||
from pyFTS.common import Transformations, Util as cUtil
|
|
||||||
import scipy.stats as st
|
|
||||||
from pyFTS.ensemble import ensemble
|
|
||||||
from pyFTS.models import msfts, cmsfts
|
|
||||||
from pyFTS.probabilistic import ProbabilityDistribution, kde
|
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from joblib import Parallel, delayed
|
from joblib import Parallel, delayed
|
||||||
import multiprocessing
|
import multiprocessing
|
@ -6,9 +6,7 @@ Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet, FLR, fts, flrg, tree
|
||||||
from pyFTS import fts, flrg, tree
|
|
||||||
|
|
||||||
|
|
||||||
class HighOrderFLRG(flrg.FLRG):
|
class HighOrderFLRG(flrg.FLRG):
|
||||||
"""Conventional High Order Fuzzy Logical Relationship Group"""
|
"""Conventional High Order Fuzzy Logical Relationship Group"""
|
@ -6,8 +6,7 @@ Fuzzy Sets Syst., no. 100, pp. 217–228, 1998.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR,Transformations
|
from pyFTS.common import FuzzySet, FLR, Transformations, fts
|
||||||
from pyFTS import fts
|
|
||||||
|
|
||||||
|
|
||||||
class HighOrderFTS(fts.FTS):
|
class HighOrderFTS(fts.FTS):
|
@ -2,8 +2,8 @@
|
|||||||
# -*- coding: utf8 -*-
|
# -*- coding: utf8 -*-
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet, FLR, fts, tree
|
||||||
from pyFTS import hofts, fts, tree
|
from pyFTS.models import hofts
|
||||||
|
|
||||||
|
|
||||||
class IntervalFTS(hofts.HighOrderFTS):
|
class IntervalFTS(hofts.HighOrderFTS):
|
@ -6,8 +6,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet, FLR, fts, flrg
|
||||||
from pyFTS import fts, flrg
|
|
||||||
|
|
||||||
|
|
||||||
class ImprovedWeightedFLRG(flrg.FLRG):
|
class ImprovedWeightedFLRG(flrg.FLRG):
|
@ -9,7 +9,7 @@ import numpy as np
|
|||||||
from pyFTS import *
|
from pyFTS import *
|
||||||
from pyFTS.common import FuzzySet as FS, Membership, FLR
|
from pyFTS.common import FuzzySet as FS, Membership, FLR
|
||||||
from pyFTS.partitioners import partitioner
|
from pyFTS.partitioners import partitioner
|
||||||
from pyFTS.nonstationary import perturbation
|
from pyFTS.models.nonstationary import perturbation
|
||||||
|
|
||||||
|
|
||||||
class FuzzySet(FS.FuzzySet):
|
class FuzzySet(FS.FuzzySet):
|
@ -1,7 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS import fts, flrg, chen
|
from pyFTS.models import chen
|
||||||
from pyFTS.nonstationary import common, perturbation, nsfts
|
from pyFTS.models.nonstationary import common,nsfts
|
||||||
from pyFTS.common import Transformations, FuzzySet, FLR
|
from pyFTS.common import FLR
|
||||||
|
|
||||||
|
|
||||||
class ConditionalVarianceFTS(chen.ConventionalFTS):
|
class ConditionalVarianceFTS(chen.ConventionalFTS):
|
@ -1,6 +1,6 @@
|
|||||||
|
|
||||||
from pyFTS import flrg
|
from pyFTS.common import flrg
|
||||||
from pyFTS.nonstationary import common
|
from pyFTS.models.nonstationary import common
|
||||||
|
|
||||||
|
|
||||||
class NonStationaryFLRG(flrg.FLRG):
|
class NonStationaryFLRG(flrg.FLRG):
|
@ -1,8 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet, FLR
|
from pyFTS.common import FuzzySet, FLR, fts, tree
|
||||||
from pyFTS import fts, hofts
|
from pyFTS.models import hofts
|
||||||
from pyFTS.nonstationary import common, flrg
|
from pyFTS.nonstationary import common, flrg
|
||||||
from pyFTS import tree
|
|
||||||
|
|
||||||
|
|
||||||
class HighOrderNonStationaryFLRG(flrg.NonStationaryFLRG):
|
class HighOrderNonStationaryFLRG(flrg.NonStationaryFLRG):
|
@ -1,6 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet, FLR
|
from pyFTS.common import FLR, fts
|
||||||
from pyFTS import fts, chen
|
|
||||||
from pyFTS.nonstationary import common, flrg
|
from pyFTS.nonstationary import common, flrg
|
||||||
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.partitioners import partitioner
|
from pyFTS.partitioners import partitioner
|
||||||
from pyFTS.nonstationary import common, perturbation
|
from pyFTS.models.nonstationary import common, perturbation
|
||||||
|
|
||||||
|
|
||||||
class PolynomialNonStationaryPartitioner(partitioner.Partitioner):
|
class PolynomialNonStationaryPartitioner(partitioner.Partitioner):
|
@ -5,8 +5,8 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import math
|
import math
|
||||||
from operator import itemgetter
|
from operator import itemgetter
|
||||||
from pyFTS.common import FLR, FuzzySet, SortedCollection
|
from pyFTS.common import FLR, FuzzySet, tree
|
||||||
from pyFTS import hofts, ifts, tree
|
from pyFTS.models import hofts, ifts
|
||||||
from pyFTS.probabilistic import ProbabilityDistribution
|
from pyFTS.probabilistic import ProbabilityDistribution
|
||||||
|
|
||||||
|
|
@ -6,8 +6,7 @@ refined exponentially weighted fuzzy time series and an improved harmony search,
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet,FLR,fts, flrg
|
||||||
from pyFTS import fts, flrg
|
|
||||||
|
|
||||||
|
|
||||||
class ExponentialyWeightedFLRG(flrg.FLRG):
|
class ExponentialyWeightedFLRG(flrg.FLRG):
|
@ -1,7 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from enum import Enum
|
from pyFTS.models.seasonal import common
|
||||||
from pyFTS.seasonal import common
|
|
||||||
|
|
||||||
|
|
||||||
class SeasonalIndexer(object):
|
class SeasonalIndexer(object):
|
@ -1,6 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet, FLR
|
||||||
from pyFTS import fts, sfts, chen
|
from pyFTS.models.seasonal import sfts
|
||||||
|
from pyFTS.models import chen
|
||||||
|
|
||||||
|
|
||||||
class ContextualSeasonalFLRG(object):
|
class ContextualSeasonalFLRG(object):
|
@ -1,6 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FLR
|
||||||
from pyFTS.seasonal import sfts
|
from pyFTS.models.seasonal import sfts
|
||||||
|
|
||||||
|
|
||||||
class MultiSeasonalFTS(sfts.SeasonalFTS):
|
class MultiSeasonalFTS(sfts.SeasonalFTS):
|
@ -7,8 +7,7 @@ S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet, FLR, fts
|
||||||
from pyFTS import fts
|
|
||||||
|
|
||||||
|
|
||||||
class SeasonalFLRG(FLR.FLR):
|
class SeasonalFLRG(FLR.FLR):
|
@ -5,8 +5,7 @@ Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Sy
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet, FLR
|
from pyFTS.common import FuzzySet, FLR, fts
|
||||||
from pyFTS import fts
|
|
||||||
|
|
||||||
|
|
||||||
class ConventionalFTS(fts.FTS):
|
class ConventionalFTS(fts.FTS):
|
@ -6,8 +6,8 @@ Phys. A Stat. Mech. its Appl., vol. 349, no. 3, pp. 609–624, 2005.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FuzzySet,FLR
|
from pyFTS.common import FuzzySet, FLR, fts, flrg
|
||||||
from pyFTS import fts, flrg, chen
|
from pyFTS.models import chen
|
||||||
|
|
||||||
|
|
||||||
class WeightedFLRG(flrg.FLRG):
|
class WeightedFLRG(flrg.FLRG):
|
@ -12,8 +12,8 @@ import datetime
|
|||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.partitioners import Grid, CMeans, FCM, Entropy
|
from pyFTS.partitioners import Grid, CMeans, FCM, Entropy
|
||||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations,Util
|
from pyFTS.common import FLR, FuzzySet, Membership, Transformations, Util, fts
|
||||||
from pyFTS import fts,sfts
|
from pyFTS import sfts
|
||||||
from pyFTS.models import msfts
|
from pyFTS.models import msfts
|
||||||
from pyFTS.benchmarks import benchmarks as bchmk
|
from pyFTS.benchmarks import benchmarks as bchmk
|
||||||
from pyFTS.benchmarks import Measures
|
from pyFTS.benchmarks import Measures
|
||||||
|
@ -1,13 +1,14 @@
|
|||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
from pyFTS import fts, flrg, song, chen, yu, sadaei, ismailefendi, cheng, hofts
|
from pyFTS.models import chen
|
||||||
from pyFTS.benchmarks import Measures
|
from pyFTS.benchmarks import Measures
|
||||||
from pyFTS.common import Util as cUtil
|
from pyFTS.common import Util as cUtil, fts
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
from pyFTS.common import Transformations
|
from pyFTS.common import Transformations
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pyFTS.nonstationary import common, flrg, util, perturbation, nsfts, honsfts, partitioners
|
from pyFTS.nonstationary import flrg, util, honsfts, partitioners
|
||||||
|
from pyFTS.models.nonstationary import nsfts
|
||||||
|
|
||||||
bc = Transformations.BoxCox(0)
|
bc = Transformations.BoxCox(0)
|
||||||
|
|
||||||
@ -19,10 +20,8 @@ os.chdir("/home/petronio/Dropbox/Doutorado/Codigos/")
|
|||||||
|
|
||||||
def evaluate_individual_model(model, partitioner, train, test, window_size, time_displacement):
|
def evaluate_individual_model(model, partitioner, train, test, window_size, time_displacement):
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FLR, FuzzySet
|
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
from pyFTS.benchmarks import Measures
|
from pyFTS.benchmarks import Measures
|
||||||
from pyFTS.nonstationary import common, flrg, util, perturbation, nsfts, honsfts, partitioners
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
model.train(train, sets=partitioner.sets, order=model.order, parameters=window_size)
|
model.train(train, sets=partitioner.sets, order=model.order, parameters=window_size)
|
||||||
|
@ -3,20 +3,13 @@
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import matplotlib as plt
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.partitioners import Grid, Entropy, FCM, Huarng
|
from pyFTS.partitioners import Grid
|
||||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
|
from pyFTS.common import Transformations
|
||||||
from pyFTS import fts,hofts,ifts,pwfts,tree, chen, song, yu, cheng, ismailefendi, sadaei, hwang
|
from pyFTS import hofts, song, yu, cheng, ismailefendi, sadaei, hwang
|
||||||
from pyFTS.benchmarks import naive, arima
|
from pyFTS.models import chen
|
||||||
from numpy import random
|
from pyFTS.models.ensemble import ensemble
|
||||||
from pyFTS.benchmarks import benchmarks as bchmk
|
|
||||||
from pyFTS.benchmarks import arima, quantreg, Measures
|
|
||||||
from pyFTS.ensemble import ensemble
|
|
||||||
|
|
||||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
||||||
|
|
||||||
|
@ -3,20 +3,13 @@
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import matplotlib as plt
|
|
||||||
#import matplotlib.pyplot as plt
|
#import matplotlib.pyplot as plt
|
||||||
#from mpl_toolkits.mplot3d import Axes3D
|
#from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.partitioners import Grid, Entropy, FCM, Huarng
|
from pyFTS.common import Transformations
|
||||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations, Util as cUtil
|
|
||||||
from pyFTS import fts,hofts,ifts,pwfts,tree, chen
|
|
||||||
#from pyFTS.benchmarks import benchmarks as bchmk
|
#from pyFTS.benchmarks import benchmarks as bchmk
|
||||||
from pyFTS.benchmarks import naive, arima
|
|
||||||
from pyFTS.benchmarks import Measures
|
|
||||||
from numpy import random
|
|
||||||
from pyFTS.seasonal import SeasonalIndexer
|
|
||||||
|
|
||||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
||||||
|
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import Membership, Transformations
|
from pyFTS.common import Membership, Transformations
|
||||||
from pyFTS.nonstationary import common,perturbation, partitioners, util,nsfts, honsfts, cvfts
|
from pyFTS.nonstationary import common,perturbation, partitioners, util, honsfts, cvfts
|
||||||
|
from pyFTS.models.nonstationary import nsfts
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from pyFTS.common import Util as cUtil
|
from pyFTS.common import Util as cUtil
|
||||||
|
@ -9,11 +9,9 @@ import matplotlib.pyplot as plt
|
|||||||
from mpl_toolkits.mplot3d import Axes3D
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.common import FLR, FuzzySet, Membership, Transformations, fts
|
||||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
|
from pyFTS.models import chen
|
||||||
from pyFTS import fts,hofts,ifts,pwfts,tree, chen
|
|
||||||
from pyFTS.benchmarks import benchmarks as bchmk
|
from pyFTS.benchmarks import benchmarks as bchmk
|
||||||
from pyFTS.benchmarks import Measures
|
|
||||||
from numpy import random
|
from numpy import random
|
||||||
|
|
||||||
#gauss_treino = random.normal(0,1.0,1600)
|
#gauss_treino = random.normal(0,1.0,1600)
|
||||||
|
@ -3,20 +3,10 @@
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import matplotlib as plt
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
|
||||||
|
|
||||||
import datetime
|
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.partitioners import Grid, CMeans, FCM, Entropy
|
from pyFTS.common import Util
|
||||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations,Util
|
|
||||||
from pyFTS import fts
|
|
||||||
from pyFTS.seasonal import sfts, msfts
|
|
||||||
from pyFTS.benchmarks import benchmarks as bchmk
|
from pyFTS.benchmarks import benchmarks as bchmk
|
||||||
from pyFTS.benchmarks import Measures
|
|
||||||
|
|
||||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
||||||
|
|
||||||
@ -38,10 +28,6 @@ sonda_teste = sonda[1051201:]
|
|||||||
# tam=[15,8], plotforecasts=False,elev=45, azim=40,
|
# tam=[15,8], plotforecasts=False,elev=45, azim=40,
|
||||||
# save=False,file="pictures/sonda_sfts_error_surface", intervals=False)
|
# save=False,file="pictures/sonda_sfts_error_surface", intervals=False)
|
||||||
|
|
||||||
from pyFTS.models.seasonal import SeasonalIndexer
|
|
||||||
from pyFTS.models import msfts
|
|
||||||
from pyFTS.common import FLR
|
|
||||||
|
|
||||||
partitions = ['grid','entropy']
|
partitions = ['grid','entropy']
|
||||||
|
|
||||||
indexers = ['m15','Mh','Mhm15']
|
indexers = ['m15','Mh','Mhm15']
|
||||||
|
11
setup.py
11
setup.py
@ -2,11 +2,12 @@ from distutils.core import setup
|
|||||||
|
|
||||||
setup(
|
setup(
|
||||||
name='pyFTS',
|
name='pyFTS',
|
||||||
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.data', 'pyFTS.ensemble',
|
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.data', 'pyFTS.models.ensemble',
|
||||||
'pyFTS.models', 'pyFTS.seasonal', 'pyFTS.partitioners', 'pyFTS.probabilistic',
|
'pyFTS.models', 'pyFTS.models.seasonal', 'pyFTS.partitioners', 'pyFTS.probabilistic',
|
||||||
'pyFTS.tests', 'pyFTS.nonstationary'],
|
'pyFTS.tests', 'pyFTS.models.nonstationary'],
|
||||||
package_data={'benchmarks': ['*'], 'common': ['*'], 'data': ['*'], 'ensemble': ['*'], 'models': ['*'],
|
package_data={'benchmarks': ['*'], 'common': ['*'], 'data': ['*'],
|
||||||
'seasonal': ['*'], 'partitioners': ['*'], 'probabilistic': ['*'], 'tests': ['*']},
|
'models': ['*'], 'seasonal': ['*'], 'ensemble': ['*'],
|
||||||
|
'partitioners': ['*'], 'probabilistic': ['*'], 'tests': ['*']},
|
||||||
version='1.1.1',
|
version='1.1.1',
|
||||||
description='Fuzzy Time Series for Python',
|
description='Fuzzy Time Series for Python',
|
||||||
author='Petronio Candido L. e Silva',
|
author='Petronio Candido L. e Silva',
|
||||||
|
Loading…
Reference in New Issue
Block a user