diff --git a/pyFTS/models/multivariate/cmvfts.py b/pyFTS/models/multivariate/cmvfts.py index 3d31f52..a3f96d4 100644 --- a/pyFTS/models/multivariate/cmvfts.py +++ b/pyFTS/models/multivariate/cmvfts.py @@ -109,10 +109,10 @@ class ClusteredMVFTS(mvfts.MVFTS): ndata = self.apply_transformations(data) - start = kwargs.get('start_at', self.order) + start = kwargs.get('start_at', 0) ret = [] - sample = ndata.iloc[start - self.max_lag:] + sample = ndata.iloc[start: start + self.max_lag] for k in np.arange(0, steps): tmp = self.forecast_distribution(sample.iloc[-self.max_lag:], **kwargs)[0] diff --git a/pyFTS/models/multivariate/mvfts.py b/pyFTS/models/multivariate/mvfts.py index 993984e..1d2e627 100644 --- a/pyFTS/models/multivariate/mvfts.py +++ b/pyFTS/models/multivariate/mvfts.py @@ -170,13 +170,12 @@ class MVFTS(fts.FTS): ndata = self.apply_transformations(data) - start = kwargs.get('start_at', self.max_lag) + start = kwargs.get('start_at', 0) - ndata = ndata.loc[ndata.index[start-self.max_lag:start]] + ndata = ndata.iloc[start: start + self.max_lag] ret = [] - for k in np.arange(start, start+steps): - ix = ndata.index[k-self.max_lag:k] - sample = ndata.loc[ix] + for k in np.arange(0, steps): + sample = ndata.iloc[-self.max_lag:] tmp = self.forecast(sample, **kwargs) if isinstance(tmp, (list, np.ndarray)): @@ -192,12 +191,13 @@ class MVFTS(fts.FTS): last_data_point = ndata.loc[ndata.index[-1]] new_data_point[data_label] = generators[data_label](last_data_point[data_label]) elif isinstance(generators[data_label], fts.FTS): - model = generators[data_label] - last_data_point = ndata.loc[[ndata.index[-model.order]]] - if not model.is_multivariate: + gen_model = generators[data_label] + last_data_point = sample.iloc[-gen_model.order:] + + if not gen_model.is_multivariate: last_data_point = last_data_point[data_label].values - new_data_point[data_label] = model.forecast(last_data_point)[0] + new_data_point[data_label] = gen_model.forecast(last_data_point)[0] new_data_point[self.target_variable.data_label] = tmp @@ -260,10 +260,10 @@ class MVFTS(fts.FTS): ndata = self.apply_transformations(data) - start = kwargs.get('start_at', self.order) + start = kwargs.get('start_at', 0) ret = [] - ix = ndata.index[start - self.max_lag:] + ix = ndata.index[start: start + self.max_lag] lo = ndata.loc[ix] #[ndata.loc[k] for k in ix] up = ndata.loc[ix] #[ndata.loc[k] for k in ix] for k in np.arange(0, steps): @@ -284,8 +284,8 @@ class MVFTS(fts.FTS): new_data_point_up[data_label] = generators[data_label](last_data_point_up[data_label]) elif isinstance(generators[data_label], fts.FTS): model = generators[data_label] - last_data_point_lo = lo.loc[lo.index[-model.order]] - last_data_point_up = up.loc[up.index[-model.order]] + last_data_point_lo = lo.loc[lo.index[-model.order:]] + last_data_point_up = up.loc[up.index[-model.order:]] if not model.is_multivariate: last_data_point_lo = last_data_point_lo[data_label].values diff --git a/pyFTS/tests/pwfts.py b/pyFTS/tests/pwfts.py index bafd961..a912c17 100644 --- a/pyFTS/tests/pwfts.py +++ b/pyFTS/tests/pwfts.py @@ -48,7 +48,7 @@ model = granular.GranularWMVFTS(explanatory_variables=[vhour, vtemp, vload], tar model.fit(train_mv) -temp_generator = pwfts.ProbabilisticWeightedFTS(partitioner=vtemp.partitioner, order=2) +temp_generator = pwfts.ProbabilisticWeightedFTS(partitioner=vtemp.partitioner, order=1) temp_generator.fit(train_mv['temperature'].values) #print(model)