Removing dispy imports on hyperparam

This commit is contained in:
Petrônio Cândido 2020-01-24 00:42:51 -03:00
parent 40bcd43230
commit dbbedce622
24 changed files with 343 additions and 54 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -109,8 +109,6 @@
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.AdaptiveExpectation">AdaptiveExpectation (class in pyFTS.common.Transformations)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.add_new_PWFLGR">add_new_PWFLGR() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.aggregate">aggregate() (in module pyFTS.common.Transformations)</a>
</li>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS">AllMethodEnsembleFTS (class in pyFTS.models.ensemble.ensemble)</a>
</li>
@ -202,6 +200,10 @@
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.BoxCox.apply">(pyFTS.common.Transformations.BoxCox method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.Differential.apply">(pyFTS.common.Transformations.Differential method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.LinearTrend.apply">(pyFTS.common.Transformations.LinearTrend method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.ROI.apply">(pyFTS.common.Transformations.ROI method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.Scale.apply">(pyFTS.common.Transformations.Scale method)</a>
</li>
@ -453,6 +455,8 @@
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset">differential_offset() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.CMeans.distance">distance() (in module pyFTS.partitioners.CMeans)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.distributed_model_train_test_time">distributed_model_train_test_time() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
<li><a href="pyFTS.distributed.html#pyFTS.distributed.spark.distributed_predict">distributed_predict() (in module pyFTS.distributed.spark)</a>
</li>
@ -855,6 +859,8 @@
<li><a href="pyFTS.common.html#pyFTS.common.FLR.generate_high_order_recurrent_flr">generate_high_order_recurrent_flr() (in module pyFTS.common.FLR)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.FLR.generate_indexed_flrs">generate_indexed_flrs() (in module pyFTS.common.FLR)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.LinearTrend.generate_indexes">generate_indexes() (pyFTS.common.Transformations.LinearTrend method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg">generate_lhs_flrg() (pyFTS.models.hofts.HighOrderFTS method)</a>
@ -991,11 +997,11 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_distribution_ahead_statistics">get_distribution_ahead_statistics() (in module pyFTS.benchmarks.Measures)</a>
</li>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_distribution_interquantile">get_distribution_interquantile() (pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_distribution_statistics">get_distribution_statistics() (in module pyFTS.benchmarks.Measures)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_distribution_statistics">get_distribution_statistics() (in module pyFTS.benchmarks.Measures)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.FuzzySet.get_fuzzysets">get_fuzzysets() (in module pyFTS.common.FuzzySet)</a>
</li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer.get_index">get_index() (pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer method)</a>
@ -1241,6 +1247,8 @@
<li><a href="pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFLRG">ImprovedWeightedFLRG (class in pyFTS.models.ismailefendi)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFTS">ImprovedWeightedFTS (class in pyFTS.models.ismailefendi)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.LinearTrend.increment">increment() (pyFTS.common.Transformations.LinearTrend method)</a>
</li>
<li><a href="pyFTS.data.html#pyFTS.data.artificial.SignalEmulator.incremental_gaussian">incremental_gaussian() (pyFTS.data.artificial.SignalEmulator method)</a>
</li>
@ -1262,10 +1270,10 @@
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.insert_benchmark">insert_benchmark() (in module pyFTS.benchmarks.Util)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.Util.insert_hyperparam">insert_hyperparam() (in module pyFTS.hyperparam.Util)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection.insert_right">insert_right() (pyFTS.common.SortedCollection.SortedCollection method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection.inside">inside() (pyFTS.common.SortedCollection.SortedCollection method)</a>
@ -1288,6 +1296,10 @@
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.BoxCox.inverse">(pyFTS.common.Transformations.BoxCox method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.Differential.inverse">(pyFTS.common.Transformations.Differential method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.LinearTrend.inverse">(pyFTS.common.Transformations.LinearTrend method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.ROI.inverse">(pyFTS.common.Transformations.ROI method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.Scale.inverse">(pyFTS.common.Transformations.Scale method)</a>
</li>
@ -1329,10 +1341,12 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.perturbation.linear">linear() (in module pyFTS.models.nonstationary.perturbation)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.quantreg.QuantileRegression.linearmodel">linearmodel() (pyFTS.benchmarks.quantreg.QuantileRegression method)</a>
</li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer">LinearSeasonalIndexer (class in pyFTS.models.seasonal.SeasonalIndexer)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer">LinearSeasonalIndexer (class in pyFTS.models.seasonal.SeasonalIndexer)</a>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.LinearTrend">LinearTrend (class in pyFTS.common.Transformations)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.ljung_box_test">ljung_box_test() (in module pyFTS.benchmarks.ResidualAnalysis)</a>
</li>
@ -1878,7 +1892,7 @@
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.rmse_interval">rmse_interval() (in module pyFTS.benchmarks.Measures)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.roi">roi() (in module pyFTS.common.Transformations)</a>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.ROI">ROI (class in pyFTS.common.Transformations)</a>
</li>
<li><a href="pyFTS.data.html#pyFTS.data.artificial.SignalEmulator.run">run() (pyFTS.data.artificial.SignalEmulator method)</a>
</li>
@ -2011,8 +2025,6 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.sliding_window_benchmarks2">sliding_window_benchmarks2() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.smape">smape() (in module pyFTS.benchmarks.Measures)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.smoothing">smoothing() (in module pyFTS.common.Transformations)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection">SortedCollection (class in pyFTS.common.SortedCollection)</a>
</li>
@ -2056,6 +2068,8 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.knn.KNearestNeighbors.train">(pyFTS.benchmarks.knn.KNearestNeighbors method)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.quantreg.QuantileRegression.train">(pyFTS.benchmarks.quantreg.QuantileRegression method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.LinearTrend.train">(pyFTS.common.Transformations.LinearTrend method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.train">(pyFTS.common.fts.FTS method)</a>
</li>
@ -2125,6 +2139,8 @@
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.Transformation">Transformation (class in pyFTS.common.Transformations)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Membership.trapmf">trapmf() (in module pyFTS.common.Membership)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.LinearTrend.trend">trend() (pyFTS.common.Transformations.LinearTrend method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.cheng.TrendWeightedFLRG">TrendWeightedFLRG (class in pyFTS.models.cheng)</a>
</li>

Binary file not shown.

View File

@ -160,6 +160,30 @@
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">compareModelsTable</code><span class="sig-paren">(</span><em>original</em>, <em>models_fo</em>, <em>models_ho</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.compareModelsTable" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.distributed_model_train_test_time">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">distributed_model_train_test_time</code><span class="sig-paren">(</span><em>models</em>, <em>data</em>, <em>windowsize</em>, <em>train=0.8</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.distributed_model_train_test_time" title="Permalink to this definition"></a></dt>
<dd><p>Assess the train and test times for a given list of configured models and save the results on a database.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>models</strong> A list of FTS models already configured, but not yet trained,</li>
<li><strong>data</strong> time series data, including train and test data</li>
<li><strong>windowsize</strong> Train/test data windows</li>
<li><strong>train</strong> Percent of data window that will be used to train the models</li>
<li><strong>kwargs</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.get_benchmark_interval_methods">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">get_benchmark_interval_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_benchmark_interval_methods" title="Permalink to this definition"></a></dt>

View File

@ -885,6 +885,8 @@ bisect but with a simpler API and support for key functions.</p>
<em class="property">class </em><code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">BoxCox</code><span class="sig-paren">(</span><em>plambda</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.BoxCox" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.common.Transformations.Transformation" title="pyFTS.common.Transformations.Transformation"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.Transformations.Transformation</span></code></a></p>
<p>Box-Cox power transformation</p>
<p>y(t) = log( y(t) )
y(t) = exp( y(t) )</p>
<dl class="method">
<dt id="pyFTS.common.Transformations.BoxCox.apply">
<code class="descname">apply</code><span class="sig-paren">(</span><em>data</em>, <em>param=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.BoxCox.apply" title="Permalink to this definition"></a></dt>
@ -940,6 +942,8 @@ bisect but with a simpler API and support for key functions.</p>
<em class="property">class </em><code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">Differential</code><span class="sig-paren">(</span><em>lag</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.Differential" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.common.Transformations.Transformation" title="pyFTS.common.Transformations.Transformation"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.Transformations.Transformation</span></code></a></p>
<p>Differentiation data transform</p>
<p>y(t) = y(t) - y(t-1)
y(t) = y(t-1) + y(t)</p>
<dl class="method">
<dt id="pyFTS.common.Transformations.Differential.apply">
<code class="descname">apply</code><span class="sig-paren">(</span><em>data</em>, <em>param=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.Differential.apply" title="Permalink to this definition"></a></dt>
@ -990,6 +994,131 @@ bisect but with a simpler API and support for key functions.</p>
</dd></dl>
<dl class="class">
<dt id="pyFTS.common.Transformations.LinearTrend">
<em class="property">class </em><code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">LinearTrend</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.LinearTrend" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.common.Transformations.Transformation" title="pyFTS.common.Transformations.Transformation"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.Transformations.Transformation</span></code></a></p>
<p>Linear Trend. Estimate</p>
<p>y(t) = y(t) - (a*t+b)
y(t) = y(t) + (a*t+b)</p>
<dl class="method">
<dt id="pyFTS.common.Transformations.LinearTrend.apply">
<code class="descname">apply</code><span class="sig-paren">(</span><em>data</em>, <em>param=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.LinearTrend.apply" title="Permalink to this definition"></a></dt>
<dd><p>Apply the transformation on input data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> input data</li>
<li><strong>param</strong> </li>
<li><strong>kwargs</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">numpy array with transformed data</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.common.Transformations.LinearTrend.generate_indexes">
<code class="descname">generate_indexes</code><span class="sig-paren">(</span><em>data</em>, <em>value</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.LinearTrend.generate_indexes" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.common.Transformations.LinearTrend.increment">
<code class="descname">increment</code><span class="sig-paren">(</span><em>value</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.LinearTrend.increment" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.common.Transformations.LinearTrend.inverse">
<code class="descname">inverse</code><span class="sig-paren">(</span><em>data</em>, <em>param=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.LinearTrend.inverse" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> transformed data</li>
<li><strong>param</strong> </li>
<li><strong>kwargs</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">numpy array with inverse transformed data</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.common.Transformations.LinearTrend.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.LinearTrend.train" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.common.Transformations.LinearTrend.trend">
<code class="descname">trend</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.LinearTrend.trend" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="class">
<dt id="pyFTS.common.Transformations.ROI">
<em class="property">class </em><code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">ROI</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.ROI" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.common.Transformations.Transformation" title="pyFTS.common.Transformations.Transformation"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.Transformations.Transformation</span></code></a></p>
<p>Return of Investment (ROI) transformation. Retrieved from Sadaei and Lee (2014) - Multilayer Stock
Forecasting Model Using Fuzzy Time Series</p>
<p>y(t) = ( y(t) - y(t-1) ) / y(t-1)
y(t) = ( y(t-1) * y(t) ) + y(t-1)</p>
<dl class="method">
<dt id="pyFTS.common.Transformations.ROI.apply">
<code class="descname">apply</code><span class="sig-paren">(</span><em>data</em>, <em>param=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.ROI.apply" title="Permalink to this definition"></a></dt>
<dd><p>Apply the transformation on input data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> input data</li>
<li><strong>param</strong> </li>
<li><strong>kwargs</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">numpy array with transformed data</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.common.Transformations.ROI.inverse">
<code class="descname">inverse</code><span class="sig-paren">(</span><em>data</em>, <em>param=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.ROI.inverse" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> transformed data</li>
<li><strong>param</strong> </li>
<li><strong>kwargs</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">numpy array with inverse transformed data</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
<dl class="class">
<dt id="pyFTS.common.Transformations.Scale">
<em class="property">class </em><code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">Scale</code><span class="sig-paren">(</span><em>min=0</em>, <em>max=1</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.Scale" title="Permalink to this definition"></a></dt>
@ -1100,21 +1229,6 @@ bisect but with a simpler API and support for key functions.</p>
<code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">Z</code><span class="sig-paren">(</span><em>original</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.Z" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.common.Transformations.aggregate">
<code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">aggregate</code><span class="sig-paren">(</span><em>original</em>, <em>operation</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.aggregate" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.common.Transformations.roi">
<code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">roi</code><span class="sig-paren">(</span><em>original</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.roi" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.common.Transformations.smoothing">
<code class="descclassname">pyFTS.common.Transformations.</code><code class="descname">smoothing</code><span class="sig-paren">(</span><em>original</em>, <em>lags</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.Transformations.smoothing" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.common.Util">
<span id="pyfts-common-util-module"></span><h2>pyFTS.common.Util module<a class="headerlink" href="#module-pyFTS.common.Util" title="Permalink to this headline"></a></h2>

View File

@ -120,34 +120,70 @@
<dl class="function">
<dt id="pyFTS.distributed.spark.create_multivariate_model">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">create_multivariate_model</code><span class="sig-paren">(</span><em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.create_multivariate_model" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>From the dictionary of parameters, create a multivariate FTS model</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>parameters</strong> dictionary of parameters</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">multivariate FTS model</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.create_spark_conf">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">create_spark_conf</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.create_spark_conf" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Configure the Spark master node</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>kwargs</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.create_univariate_model">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">create_univariate_model</code><span class="sig-paren">(</span><em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.create_univariate_model" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>From the dictionary of parameters, create an univariate FTS model</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>parameters</strong> dictionary of parameters</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">univariate FTS model</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.distributed_predict">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">distributed_predict</code><span class="sig-paren">(</span><em>data</em>, <em>model</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.distributed_predict" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<dd><p>The main method for distributed forecasting with FTS models using Spark clusters.</p>
<p>It takes a trained FTS model and the test data, connect with the Spark cluster,
proceed the distributed forecasting and return the merged forecasted values.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>model</strong> </li>
<li><strong>data</strong> </li>
<li><strong>url</strong> </li>
<li><strong>model</strong> an FTS trained model</li>
<li><strong>data</strong> test data</li>
<li><strong>url</strong> URL of the Spark master</li>
<li><strong>app</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">forecasted values</p>
</td>
</tr>
</tbody>
@ -157,19 +193,22 @@
<dl class="function">
<dt id="pyFTS.distributed.spark.distributed_train">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">distributed_train</code><span class="sig-paren">(</span><em>model</em>, <em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.distributed_train" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<dd><p>The main method for distributed training of FTS models using Spark clusters.</p>
<p>It takes an empty model and the train data, connect with the Spark cluster, proceed the
distributed training and return the learned model.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>model</strong> </li>
<li><strong>data</strong> </li>
<li><strong>url</strong> </li>
<li><strong>app</strong> </li>
<li><strong>model</strong> An empty (non-trained) FTS model</li>
<li><strong>data</strong> train data</li>
<li><strong>url</strong> URL of the Spark master node</li>
<li><strong>app</strong> Application name</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">trained model</p>
</td>
</tr>
</tbody>
@ -179,18 +218,42 @@
<dl class="function">
<dt id="pyFTS.distributed.spark.get_clustered_partitioner">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">get_clustered_partitioner</code><span class="sig-paren">(</span><em>explanatory_variables</em>, <em>target_variable</em>, <em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.get_clustered_partitioner" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Return the UoD partitioner from the shared_partitioner fuzzy sets, special case for
clustered multivariate FTS.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>explanatory_variables</strong> the list with the names of the explanatory variables</li>
<li><strong>target_variable</strong> the name of the target variable</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Partitioner object</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.get_partitioner">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">get_partitioner</code><span class="sig-paren">(</span><em>shared_partitioner</em>, <em>type='common'</em>, <em>variables=[]</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.get_partitioner" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<dd><p>Return the UoD partitioner from the shared_partitioner fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>part</strong> </td>
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>shared_partitioner</strong> the shared variable with the fuzzy sets</li>
<li><strong>type</strong> the type of the partitioner</li>
<li><strong>variables</strong> in case of a Multivariate FTS, the list of variables</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Partitioner object</p>
</td>
</tr>
</tbody>
</table>
@ -199,28 +262,78 @@
<dl class="function">
<dt id="pyFTS.distributed.spark.get_variables">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">get_variables</code><span class="sig-paren">(</span><em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.get_variables" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>From the dictionary of parameters, return a tuple with the list of explanatory and target variables</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>parameters</strong> dictionary of parameters</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">a tuple with the list of explanatory and target variables</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.share_parameters">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">share_parameters</code><span class="sig-paren">(</span><em>model</em>, <em>context</em>, <em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.share_parameters" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Create a shared variable with a dictionary of the model parameters and hyperparameters</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>model</strong> the FTS model to extract the parameters and hyperparameters</li>
<li><strong>context</strong> Spark context</li>
<li><strong>data</strong> dataset</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">the shared variable with the dictionary of parameters</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.slave_forecast_multivariate">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">slave_forecast_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.slave_forecast_multivariate" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Receive test data, create a multivariate FTS model from the parameters and return the forecasted values</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> test data</li>
<li><strong>parameters</strong> dictionary of parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">forecasted values from the data input</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.slave_forecast_univariate">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">slave_forecast_univariate</code><span class="sig-paren">(</span><em>data</em>, <em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.slave_forecast_univariate" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<dd><p>Receive test data, create an univariate FTS model from the parameters and return the forecasted values</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> </td>
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> test data</li>
<li><strong>parameters</strong> dictionary of parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">forecasted values from the data input</p>
</td>
</tr>
</tbody>
</table>
@ -229,18 +342,40 @@
<dl class="function">
<dt id="pyFTS.distributed.spark.slave_train_multivariate">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">slave_train_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.slave_train_multivariate" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Receive train data, train a multivariate FTS model and return the learned rules</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> train data</li>
<li><strong>parameters</strong> dictionary of parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Key/value list of the learned rules</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.distributed.spark.slave_train_univariate">
<code class="descclassname">pyFTS.distributed.spark.</code><code class="descname">slave_train_univariate</code><span class="sig-paren">(</span><em>data</em>, <em>**parameters</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.distributed.spark.slave_train_univariate" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<dd><p>Receive train data, train an univariate FTS model and return the learned rules</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> </td>
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> train data</li>
<li><strong>parameters</strong> dictionary of parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Key/value list of the learned rules</p>
</td>
</tr>
</tbody>
</table>

File diff suppressed because one or more lines are too long