PIFTS - Density forecast
This commit is contained in:
parent
ccdc74a49d
commit
d27141df81
@ -61,6 +61,13 @@ def getIntervalStatistics(original,models):
|
|||||||
ret = ret + str( round(coverage(original[fts.order-1 :],forecasts),2)) + " \\ \n"
|
ret = ret + str( round(coverage(original[fts.order-1 :],forecasts),2)) + " \\ \n"
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
def plotDistribution(dist):
|
||||||
|
for k in dist.index:
|
||||||
|
alpha = np.array([dist[x][k] for x in dist])*100
|
||||||
|
x = [k for x in np.arange(0,len(alpha))]
|
||||||
|
y = dist.columns
|
||||||
|
plt.scatter(x,y,c=alpha,marker='s',linewidths=0,cmap='Reds',edgecolors=None)
|
||||||
|
|
||||||
def plotComparedSeries(original,models, colors):
|
def plotComparedSeries(original,models, colors):
|
||||||
fig = plt.figure(figsize=[25,10])
|
fig = plt.figure(figsize=[25,10])
|
||||||
ax = fig.add_subplot(111)
|
ax = fig.add_subplot(111)
|
||||||
|
42
pifts.py
42
pifts.py
@ -1,4 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
from pyFTS import *
|
from pyFTS import *
|
||||||
|
|
||||||
class ProbabilisticFLRG(hofts.HighOrderFLRG):
|
class ProbabilisticFLRG(hofts.HighOrderFLRG):
|
||||||
@ -79,6 +80,8 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
|||||||
|
|
||||||
ndata = np.array(data)
|
ndata = np.array(data)
|
||||||
|
|
||||||
|
#print(ndata)
|
||||||
|
|
||||||
l = len(ndata)
|
l = len(ndata)
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
@ -172,6 +175,45 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
|||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
def getGridClean(self,resolution):
|
||||||
|
grid = {}
|
||||||
|
for sbin in np.arange(self.sets[0].lower,self.sets[-1].upper,resolution):
|
||||||
|
grid[sbin] = 0
|
||||||
|
|
||||||
|
return grid
|
||||||
|
|
||||||
|
def gridCount(self, grid, resolution, interval):
|
||||||
|
for sbin in sorted(grid):
|
||||||
|
if sbin >= interval[0] and (sbin + resolution) <= interval[1]:
|
||||||
|
grid[sbin] = grid[sbin] + 1
|
||||||
|
return grid
|
||||||
|
|
||||||
|
def forecastDistributionAhead(self,data,steps,resolution):
|
||||||
|
|
||||||
|
ret = []
|
||||||
|
|
||||||
|
intervals = self.forecastAhead(data,steps)
|
||||||
|
|
||||||
|
for k in np.arange(self.order,steps):
|
||||||
|
|
||||||
|
grid = self.getGridClean(resolution)
|
||||||
|
|
||||||
|
qt1st = self.forecast([intervals[x][0] + (intervals[x][1]-intervals[x][0])/4 for x in np.arange(k-self.order,k)] )
|
||||||
|
qt2nd = self.forecast([intervals[x][0] + (intervals[x][1]-intervals[x][0])/2 for x in np.arange(k-self.order,k)] )
|
||||||
|
qt3rd = self.forecast([intervals[x][1] - (intervals[x][1]-intervals[x][0])/4 for x in np.arange(k-self.order,k)] )
|
||||||
|
grid = self.gridCount(grid,resolution, intervals[k])
|
||||||
|
grid = self.gridCount(grid,resolution, np.ravel(qt1st))
|
||||||
|
grid = self.gridCount(grid,resolution, np.ravel(qt2nd))
|
||||||
|
grid = self.gridCount(grid,resolution, np.ravel(qt3rd))
|
||||||
|
|
||||||
|
tmp = np.array([ grid[k] for k in sorted(grid) ])
|
||||||
|
|
||||||
|
ret.append( tmp/sum(tmp) )
|
||||||
|
|
||||||
|
grid = self.getGridClean(resolution)
|
||||||
|
df = pd.DataFrame(ret, columns=sorted(grid))
|
||||||
|
return df
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
tmp = self.name + ":\n"
|
tmp = self.name + ":\n"
|
||||||
for r in sorted(self.flrgs):
|
for r in sorted(self.flrgs):
|
||||||
|
Loading…
Reference in New Issue
Block a user