Correções em HOFTS, IFTS e PIFTS
This commit is contained in:
parent
62ca5efc1b
commit
ce5c267505
15
hofts.py
15
hofts.py
@ -4,12 +4,13 @@ from pyFTS import *
|
|||||||
class HighOrderFLRG:
|
class HighOrderFLRG:
|
||||||
def __init__(self,order):
|
def __init__(self,order):
|
||||||
self.LHS = []
|
self.LHS = []
|
||||||
self.RHS = []
|
self.RHS = {}
|
||||||
self.order = order
|
self.order = order
|
||||||
self.strlhs = ""
|
self.strlhs = ""
|
||||||
|
|
||||||
def appendRHS(self,c):
|
def appendRHS(self,c):
|
||||||
self.RHS.append(c)
|
if c.name not in self.RHS:
|
||||||
|
self.RHS[c.name] = c
|
||||||
|
|
||||||
def strLHS(self):
|
def strLHS(self):
|
||||||
if len(self.strlhs) == 0:
|
if len(self.strlhs) == 0:
|
||||||
@ -24,16 +25,17 @@ class HighOrderFLRG:
|
|||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
tmp = ""
|
tmp = ""
|
||||||
for c in sorted(self.RHS, key=lambda s: s.name):
|
for c in sorted(self.RHS):
|
||||||
if len(tmp) > 0:
|
if len(tmp) > 0:
|
||||||
tmp = tmp + ","
|
tmp = tmp + ","
|
||||||
tmp = tmp + c.name
|
tmp = tmp + c
|
||||||
return self.strLHS() + " -> " + tmp
|
return self.strLHS() + " -> " + tmp
|
||||||
|
|
||||||
class HighOrderFTS(fts.FTS):
|
class HighOrderFTS(fts.FTS):
|
||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(HighOrderFTS, self).__init__(1,name)
|
super(HighOrderFTS, self).__init__(1,name)
|
||||||
self.order = 1
|
self.order = 1
|
||||||
|
self.setsDict = {}
|
||||||
|
|
||||||
def generateFLRG(self, flrs):
|
def generateFLRG(self, flrs):
|
||||||
flrgs = {}
|
flrgs = {}
|
||||||
@ -54,10 +56,15 @@ class HighOrderFTS(fts.FTS):
|
|||||||
def train(self, data, sets, order):
|
def train(self, data, sets, order):
|
||||||
self.order = order
|
self.order = order
|
||||||
self.sets = sets
|
self.sets = sets
|
||||||
|
for s in self.sets: self.setsDict[s.name] = s
|
||||||
tmpdata = common.fuzzySeries(data,sets)
|
tmpdata = common.fuzzySeries(data,sets)
|
||||||
flrs = common.generateRecurrentFLRs(tmpdata)
|
flrs = common.generateRecurrentFLRs(tmpdata)
|
||||||
self.flrgs = self.generateFLRG(flrs)
|
self.flrgs = self.generateFLRG(flrs)
|
||||||
|
|
||||||
|
def getMidpoints(self,flrg):
|
||||||
|
ret = np.array([self.setsDict[s].centroid for s in flrg.RHS])
|
||||||
|
return ret
|
||||||
|
|
||||||
def forecast(self,data):
|
def forecast(self,data):
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
10
ifts.py
10
ifts.py
@ -1,8 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS import *
|
from pyFTS import *
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class IntervalFTS(hofts.HighOrderFTS):
|
class IntervalFTS(hofts.HighOrderFTS):
|
||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(IntervalFTS, self).__init__(name)
|
super(IntervalFTS, self).__init__(name)
|
||||||
@ -11,7 +9,7 @@ class IntervalFTS(hofts.HighOrderFTS):
|
|||||||
def getUpper(self,flrg):
|
def getUpper(self,flrg):
|
||||||
if flrg.strLHS() in self.flrgs:
|
if flrg.strLHS() in self.flrgs:
|
||||||
tmp = self.flrgs[ flrg.strLHS() ]
|
tmp = self.flrgs[ flrg.strLHS() ]
|
||||||
ret = max(np.array([s.upper for s in tmp.RHS]))
|
ret = max(np.array([self.setsDict[s].upper for s in tmp.RHS]))
|
||||||
else:
|
else:
|
||||||
ret = flrg.LHS[-1].upper
|
ret = flrg.LHS[-1].upper
|
||||||
return ret
|
return ret
|
||||||
@ -19,7 +17,7 @@ class IntervalFTS(hofts.HighOrderFTS):
|
|||||||
def getLower(self,flrg):
|
def getLower(self,flrg):
|
||||||
if flrg.strLHS() in self.flrgs:
|
if flrg.strLHS() in self.flrgs:
|
||||||
tmp = self.flrgs[ flrg.strLHS() ]
|
tmp = self.flrgs[ flrg.strLHS() ]
|
||||||
ret = min(np.array([s.lower for s in tmp.RHS]))
|
ret = min(np.array([self.setsDict[s].lower for s in tmp.RHS]))
|
||||||
else:
|
else:
|
||||||
ret = flrg.LHS[-1].lower
|
ret = flrg.LHS[-1].lower
|
||||||
return ret
|
return ret
|
||||||
@ -48,8 +46,6 @@ class IntervalFTS(hofts.HighOrderFTS):
|
|||||||
|
|
||||||
for k in np.arange(self.order,l):
|
for k in np.arange(self.order,l):
|
||||||
|
|
||||||
print(k)
|
|
||||||
|
|
||||||
flrs = []
|
flrs = []
|
||||||
mvs = []
|
mvs = []
|
||||||
|
|
||||||
@ -61,7 +57,7 @@ class IntervalFTS(hofts.HighOrderFTS):
|
|||||||
lags = {}
|
lags = {}
|
||||||
if self.order > 1:
|
if self.order > 1:
|
||||||
subset = ndata[k-self.order : k ]
|
subset = ndata[k-self.order : k ]
|
||||||
print(subset)
|
|
||||||
for instance in subset:
|
for instance in subset:
|
||||||
mb = common.fuzzyInstance(instance, self.sets)
|
mb = common.fuzzyInstance(instance, self.sets)
|
||||||
tmp = np.argwhere( mb )
|
tmp = np.argwhere( mb )
|
||||||
|
76
pifts.py
76
pifts.py
@ -1,45 +1,33 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS import *
|
from pyFTS import *
|
||||||
|
|
||||||
class ProbabilisticIntervalFLRG:
|
class ProbabilisticIntervalFLRG(hofts.HighOrderFLRG):
|
||||||
def __init__(self,order):
|
def __init__(self,order):
|
||||||
self.LHS = []
|
super(ProbabilisticIntervalFLRG, self).__init__(order)
|
||||||
self.RHS = []
|
self.RHS = {}
|
||||||
self.RHSfreqs = {}
|
|
||||||
self.order = order
|
|
||||||
self.frequencyCount = 0
|
self.frequencyCount = 0
|
||||||
self.strlhs = ""
|
|
||||||
|
|
||||||
def appendRHS(self,c):
|
def appendRHS(self,c):
|
||||||
self.RHS.append(c)
|
|
||||||
self.frequencyCount = self.frequencyCount + 1
|
self.frequencyCount = self.frequencyCount + 1
|
||||||
if c.name in self.RHSfreqs:
|
if c.name in self.RHS:
|
||||||
self.RHSfreqs[c.name] = self.RHSfreqs[c.name] + 1
|
self.RHS[c.name] = self.RHS[c.name] + 1
|
||||||
else:
|
else:
|
||||||
self.RHSfreqs[c.name] = 1
|
self.RHS[c.name] = 1
|
||||||
|
|
||||||
def strLHS(self):
|
def getProbability(self,c):
|
||||||
if len(self.strlhs) == 0:
|
return self.RHS[c] / self.frequencyCount
|
||||||
for c in self.LHS:
|
|
||||||
if len(self.strlhs) > 0:
|
|
||||||
self.strlhs = self.strlhs + ","
|
|
||||||
self.strlhs = self.strlhs + c.name
|
|
||||||
return self.strlhs
|
|
||||||
|
|
||||||
def appendLHS(self,c):
|
|
||||||
self.LHS.append(c)
|
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
tmp = ""
|
tmp2 = ""
|
||||||
for c in sorted(self.RHS, key=lambda s: s.name):
|
for c in sorted(self.RHS):
|
||||||
if len(tmp) > 0:
|
if len(tmp2) > 0:
|
||||||
tmp = tmp + ","
|
tmp2 = tmp2 + ","
|
||||||
tmp = tmp + c.name
|
tmp2 = tmp2 + c + "(" + str(round(self.RHS[c]/self.frequencyCount,3)) + ")"
|
||||||
return self.strLHS() + " -> " + tmp
|
return self.strLHS() + " -> " + tmp2
|
||||||
|
|
||||||
class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(IntervalFTS, self).__init__(1,name)
|
super(ProbabilisticIntervalFTS, self).__init__(name)
|
||||||
self.flrgs = {}
|
self.flrgs = {}
|
||||||
self.globalFrequency = 0
|
self.globalFrequency = 0
|
||||||
|
|
||||||
@ -61,6 +49,25 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
|||||||
self.globalFrequency = self.globalFrequency + 1
|
self.globalFrequency = self.globalFrequency + 1
|
||||||
return (flrgs)
|
return (flrgs)
|
||||||
|
|
||||||
|
def getProbability(self, flrg):
|
||||||
|
return flrg.frequencyCount / self.globalFrequency
|
||||||
|
|
||||||
|
def getUpper(self,flrg):
|
||||||
|
if flrg.strLHS() in self.flrgs:
|
||||||
|
tmp = self.flrgs[ flrg.strLHS() ]
|
||||||
|
ret = sum(np.array([ tmp.getProbability(s) * self.setsDict[s].upper for s in tmp.RHS]))
|
||||||
|
else:
|
||||||
|
ret = flrg.LHS[-1].upper
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def getLower(self,flrg):
|
||||||
|
if flrg.strLHS() in self.flrgs:
|
||||||
|
tmp = self.flrgs[ flrg.strLHS() ]
|
||||||
|
ret = sum(np.array([ tmp.getProbability(s) * self.setsDict[s].lower for s in tmp.RHS]))
|
||||||
|
else:
|
||||||
|
ret = flrg.LHS[-1].lower
|
||||||
|
return ret
|
||||||
|
|
||||||
def forecast(self,data):
|
def forecast(self,data):
|
||||||
|
|
||||||
ndata = np.array(data)
|
ndata = np.array(data)
|
||||||
@ -105,26 +112,27 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
|||||||
flrg = hofts.HighOrderFLRG(self.order)
|
flrg = hofts.HighOrderFLRG(self.order)
|
||||||
for kk in path: flrg.appendLHS(self.sets[ kk ])
|
for kk in path: flrg.appendLHS(self.sets[ kk ])
|
||||||
|
|
||||||
flrs.append(flrg)
|
##
|
||||||
|
flrs.append( self.flrgs[ flrg.strLHS() ] )
|
||||||
|
|
||||||
# Acha a pertinência geral de cada FLRG
|
# Acha a pertinência geral de cada FLRG
|
||||||
mvs.append(min(self.getSequenceMembership(subset, flrg.LHS)))
|
mvs.append(min(self.getSequenceMembership(subset, flrg.LHS)))
|
||||||
else:
|
else:
|
||||||
|
|
||||||
mv = common.fuzzyInstance(ndata[k],self.sets)
|
mv = common.fuzzyInstance(ndata[k],self.sets) # get all membership values
|
||||||
tmp = np.argwhere( mv )
|
tmp = np.argwhere( mv ) # get the indices of values > 0
|
||||||
idx = np.ravel(tmp)
|
idx = np.ravel(tmp) # flatten the array
|
||||||
for kk in idx:
|
for kk in idx:
|
||||||
flrg = hofts.HighOrderFLRG(self.order)
|
flrg = hofts.HighOrderFLRG(self.order)
|
||||||
flrg.appendLHS(self.sets[ kk ])
|
flrg.appendLHS(self.sets[ kk ])
|
||||||
flrs.append(flrg)
|
flrs.append( self.flrgs[ flrg.strLHS() ] )
|
||||||
mvs.append(mv[kk])
|
mvs.append(mv[kk])
|
||||||
|
|
||||||
count = 0
|
count = 0
|
||||||
for flrg in flrs:
|
for flrg in flrs:
|
||||||
# achar o os bounds de cada FLRG, ponderados pela pertinência
|
# achar o os bounds de cada FLRG, ponderados pela pertinência
|
||||||
up.append( mvs[count] * self.getUpper(flrg) )
|
up.append( self.getProbability(flrg) * mvs[count] * self.getUpper(flrg) )
|
||||||
lo.append( mvs[count] * self.getLower(flrg) )
|
lo.append( self.getProbability(flrg) * mvs[count] * self.getLower(flrg) )
|
||||||
count = count + 1
|
count = count + 1
|
||||||
|
|
||||||
# gerar o intervalo
|
# gerar o intervalo
|
||||||
|
Loading…
Reference in New Issue
Block a user