- QuantReg façade for statsmodels

This commit is contained in:
Petrônio Cândido de Lima e Silva 2017-04-13 17:27:38 -03:00
parent d804e15211
commit cd2e2b7586
3 changed files with 64 additions and 25 deletions

View File

@ -23,6 +23,8 @@ class ARIMA(fts.FTS):
self.minOrder = 1
def train(self, data, sets, order=1, parameters=None):
ndata = np.array(self.doTransformations(data))
if parameters is not None:
self.p = parameters[0]
self.d = parameters[1]
@ -31,7 +33,7 @@ class ARIMA(fts.FTS):
self.shortname = "ARIMA(" + str(self.p) + "," + str(self.d) + "," + str(self.q) + ")"
old_fit = self.model_fit
self.model = stats_arima(data, order=(self.p, self.d, self.q))
self.model = stats_arima(ndata, order=(self.p, self.d, self.q))
#try:
self.model_fit = self.model.fit(disp=0)
#except:

View File

@ -3,6 +3,7 @@
import numpy as np
from statsmodels.regression.quantile_regression import QuantReg
from statsmodels.tsa.tsatools import lagmat
from pyFTS import fts
@ -12,13 +13,60 @@ class QuantileRegression(fts.FTS):
self.name = "QR"
self.detail = "Quantile Regression"
self.isHighOrder = True
self.hasPointForecasting = True
self.hasIntervalForecasting = True
self.benchmark_only = True
self.minOrder = 1
self.alpha = 0.5
self.upper_qt = None
self.mean_qt = None
self.lower_qt = None
def train(self, data, sets, order=1, parameters=None):
pass
self.order = order
tmp = np.array(self.doTransformations(data))
lagdata, ndata = lagmat(tmp, maxlag=order, trim="both", original='sep')
uqt = QuantReg(ndata, lagdata).fit(1 - self.alpha)
mqt = QuantReg(ndata, lagdata).fit(0.5)
lqt = QuantReg(ndata, lagdata).fit(self.alpha)
self.upper_qt = [uqt.params[k] for k in uqt.params.keys()]
self.mean_qt = [mqt.params[k] for k in mqt.params.keys()]
self.lower_qt = [lqt.params[k] for k in lqt.params.keys()]
def linearmodel(self,data,params):
return params[0] + sum([ data[k] * params[k+1] for k in np.arange(0, self.order) ])
def forecast(self, data):
pass
ndata = np.array(self.doTransformations(data))
l = len(ndata)
ret = []
for k in np.arange(self.order, l):
sample = ndata[k - self.order : k]
ret.append(self.linearmodel(sample, self.mean_qt))
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret
def forecastInterval(self, data):
ndata = np.array(self.doTransformations(data))
l = len(ndata)
ret = []
for k in np.arange(self.order - 1, l):
sample = ndata[k - self.order: k]
up = self.linearmodel(sample, self.upper_qt)
down = self.linearmodel(sample, self.down_qt)
ret.append([up, down])
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret

View File

@ -28,38 +28,27 @@ os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
taiex = np.array(taiexpd["avg"][:5000])
from statsmodels.tsa.arima_model import ARIMA as stats_arima
#from statsmodels.tsa.arima_model import ARIMA as stats_arima
from statsmodels.tsa.tsatools import lagmat
model = stats_arima(taiex[:1600], (2,0,1)).fit(disp=0)
tmp = np.arange(10)
ar = np.array(taiex[1598:1600]).dot( model.arparams )
#print(ar)
res = ar - taiex[1600]
#print(res)
ma = np.array([res]).dot(model.maparams)
#print(ma)
print(ar + ma)
print(taiex[1598:1601])
print(taiex[1600])
lag, a = lagmat(tmp, maxlag=2, trim="both", original='sep')
print(lag)
print(a)
#from pyFTS.benchmarks import distributed_benchmarks as bchmk
#from pyFTS.benchmarks import parallel_benchmarks as bchmk
#from pyFTS.benchmarks import benchmarks as bchmk
from pyFTS.benchmarks import arima
#from pyFTS.benchmarks import arima
tmp = arima.ARIMA("")
tmp.train(taiex[:1600],None,parameters=(2,0,1))
teste = tmp.forecast(taiex[1598:1601])
#tmp = arima.ARIMA("")
#tmp.train(taiex[:1600],None,parameters=(2,0,1))
#teste = tmp.forecast(taiex[1598:1601])
print(teste)
#print(teste)
#bchmk.teste(taiex,['192.168.0.109', '192.168.0.101'])