Refatoração e criação da package common
This commit is contained in:
parent
aabb501f43
commit
ccfbd20d72
97
common.py
97
common.py
@ -1,97 +0,0 @@
|
||||
import numpy as np
|
||||
from pyFTS import *
|
||||
|
||||
def differential(original):
|
||||
n = len(original)
|
||||
diff = [ original[t-1]-original[t] for t in np.arange(1,n) ]
|
||||
diff.insert(0,0)
|
||||
return np.array(diff)
|
||||
|
||||
def trimf(x,parameters):
|
||||
xx = round(x,3)
|
||||
if(xx < parameters[0]):
|
||||
return 0
|
||||
elif(xx >= parameters[0] and xx < parameters[1]):
|
||||
return (x-parameters[0])/(parameters[1]-parameters[0])
|
||||
elif(xx >= parameters[1] and xx <= parameters[2]):
|
||||
return (parameters[2]-xx)/(parameters[2]-parameters[1])
|
||||
else:
|
||||
return 0
|
||||
|
||||
def trapmf(x, parameters):
|
||||
if(x < parameters[0]):
|
||||
return 0
|
||||
elif(x >= parameters[0] and x < parameters[1]):
|
||||
return (x-parameters[0])/(parameters[1]-parameters[0])
|
||||
elif(x >= parameters[1] and x <= parameters[2]):
|
||||
return 1
|
||||
elif(x >= parameters[2] and x <= parameters[3]):
|
||||
return (parameters[3]-x)/(parameters[3]-parameters[2])
|
||||
else:
|
||||
return 0
|
||||
|
||||
def gaussmf(x,parameters):
|
||||
return math.exp(-0.5*((x-parameters[0]) / parameters[1] )**2)
|
||||
|
||||
|
||||
def bellmf(x,parameters):
|
||||
return 1 / (1 + abs((xx - parameters[2])/parameters[0])**(2*parameters[1]))
|
||||
|
||||
|
||||
def sigmf(x,parameters):
|
||||
return 1 / (1 + math.exp(-parameters[0] * (x - parameters[1])))
|
||||
|
||||
|
||||
class FuzzySet:
|
||||
def __init__(self,name,mf,parameters,centroid):
|
||||
self.name = name
|
||||
self.mf = mf
|
||||
self.parameters = parameters
|
||||
self.centroid = centroid
|
||||
self.lower = min(parameters)
|
||||
self.upper = max(parameters)
|
||||
|
||||
def membership(self,x):
|
||||
return self.mf(x,self.parameters)
|
||||
|
||||
def __str__(self):
|
||||
return self.name + ": " + str(self.mf) + "(" + str(self.parameters) + ")"
|
||||
|
||||
class FLR:
|
||||
def __init__(self,LHS,RHS):
|
||||
self.LHS = LHS
|
||||
self.RHS = RHS
|
||||
|
||||
def __str__(self):
|
||||
return str(self.LHS) + " -> " + str(self.RHS)
|
||||
|
||||
def fuzzyInstance(inst, fuzzySets):
|
||||
mv = np.array([ fs.membership(inst) for fs in fuzzySets])
|
||||
return mv
|
||||
|
||||
|
||||
def getMaxMembershipFuzzySet(inst, fuzzySets):
|
||||
mv = fuzzyInstance(inst,fuzzySets)
|
||||
return fuzzySets[ np.argwhere(mv == max(mv) )[0,0] ]
|
||||
|
||||
|
||||
def fuzzySeries(data,fuzzySets):
|
||||
fts = []
|
||||
for item in data:
|
||||
fts.append(getMaxMembershipFuzzySet(item,fuzzySets))
|
||||
return fts
|
||||
|
||||
|
||||
def generateNonRecurrentFLRs(fuzzyData):
|
||||
flrs = {}
|
||||
for i in range(2,len(fuzzyData)):
|
||||
tmp = FLR(fuzzyData[i-1],fuzzyData[i])
|
||||
flrs[str(tmp)] = tmp
|
||||
ret = [value for key, value in flrs.items()]
|
||||
return ret
|
||||
|
||||
def generateRecurrentFLRs(fuzzyData):
|
||||
flrs = []
|
||||
for i in np.arange(1,len(fuzzyData)):
|
||||
flrs.append(FLR(fuzzyData[i-1],fuzzyData[i]))
|
||||
return flrs
|
21
common/FLR.py
Normal file
21
common/FLR.py
Normal file
@ -0,0 +1,21 @@
|
||||
class FLR:
|
||||
def __init__(self, LHS, RHS):
|
||||
self.LHS = LHS
|
||||
self.RHS = RHS
|
||||
|
||||
def __str__(self):
|
||||
return str(self.LHS) + " -> " + str(self.RHS)
|
||||
|
||||
def generateNonRecurrentFLRs(fuzzyData):
|
||||
flrs = {}
|
||||
for i in range(2,len(fuzzyData)):
|
||||
tmp = FLR(fuzzyData[i-1],fuzzyData[i])
|
||||
flrs[str(tmp)] = tmp
|
||||
ret = [value for key, value in flrs.items()]
|
||||
return ret
|
||||
|
||||
def generateRecurrentFLRs(fuzzyData):
|
||||
flrs = []
|
||||
for i in np.arange(1,len(fuzzyData)):
|
||||
flrs.append(FLR(fuzzyData[i-1],fuzzyData[i]))
|
||||
return flrs
|
35
common/FuzzySet.py
Normal file
35
common/FuzzySet.py
Normal file
@ -0,0 +1,35 @@
|
||||
import numpy as np
|
||||
from pyFTS import *
|
||||
|
||||
|
||||
class FuzzySet:
|
||||
def __init__(self, name, mf, parameters, centroid):
|
||||
self.name = name
|
||||
self.mf = mf
|
||||
self.parameters = parameters
|
||||
self.centroid = centroid
|
||||
self.lower = min(parameters)
|
||||
self.upper = max(parameters)
|
||||
|
||||
def membership(self, x):
|
||||
return self.mf(x, self.parameters)
|
||||
|
||||
def __str__(self):
|
||||
return self.name + ": " + str(self.mf) + "(" + str(self.parameters) + ")"
|
||||
|
||||
|
||||
def fuzzyInstance(inst, fuzzySets):
|
||||
mv = np.array([fs.membership(inst) for fs in fuzzySets])
|
||||
return mv
|
||||
|
||||
|
||||
def getMaxMembershipFuzzySet(inst, fuzzySets):
|
||||
mv = fuzzyInstance(inst, fuzzySets)
|
||||
return fuzzySets[np.argwhere(mv == max(mv))[0, 0]]
|
||||
|
||||
|
||||
def fuzzySeries(data, fuzzySets):
|
||||
fts = []
|
||||
for item in data:
|
||||
fts.append(getMaxMembershipFuzzySet(item, fuzzySets))
|
||||
return fts
|
40
common/Membership.py
Normal file
40
common/Membership.py
Normal file
@ -0,0 +1,40 @@
|
||||
import numpy as np
|
||||
import math
|
||||
from pyFTS import *
|
||||
|
||||
|
||||
def trimf(x, parameters):
|
||||
xx = round(x, 3)
|
||||
if (xx < parameters[0]):
|
||||
return 0
|
||||
elif (xx >= parameters[0] and xx < parameters[1]):
|
||||
return (x - parameters[0]) / (parameters[1] - parameters[0])
|
||||
elif (xx >= parameters[1] and xx <= parameters[2]):
|
||||
return (parameters[2] - xx) / (parameters[2] - parameters[1])
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def trapmf(x, parameters):
|
||||
if (x < parameters[0]):
|
||||
return 0
|
||||
elif (x >= parameters[0] and x < parameters[1]):
|
||||
return (x - parameters[0]) / (parameters[1] - parameters[0])
|
||||
elif (x >= parameters[1] and x <= parameters[2]):
|
||||
return 1
|
||||
elif (x >= parameters[2] and x <= parameters[3]):
|
||||
return (parameters[3] - x) / (parameters[3] - parameters[2])
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def gaussmf(x, parameters):
|
||||
return math.exp(-0.5 * ((x - parameters[0]) / parameters[1]) ** 2)
|
||||
|
||||
|
||||
def bellmf(x, parameters):
|
||||
return 1 / (1 + abs((x - parameters[2]) / parameters[0]) ** (2 * parameters[1]))
|
||||
|
||||
|
||||
def sigmf(x, parameters):
|
||||
return 1 / (1 + math.exp(-parameters[0] * (x - parameters[1])))
|
8
common/Transformations.py
Normal file
8
common/Transformations.py
Normal file
@ -0,0 +1,8 @@
|
||||
import numpy as np
|
||||
from pyFTS import *
|
||||
|
||||
def differential(original):
|
||||
n = len(original)
|
||||
diff = [ original[t-1]-original[t] for t in np.arange(1,n) ]
|
||||
diff.insert(0,0)
|
||||
return np.array(diff)
|
0
common/__init__.py
Normal file
0
common/__init__.py
Normal file
Loading…
Reference in New Issue
Block a user