- Issue #3 - Code documentation with PEP 257 compliance
This commit is contained in:
parent
fb9c3585be
commit
cbfbf47f54
@ -4,6 +4,7 @@
|
|||||||
pyFTS module for common benchmark metrics
|
pyFTS module for common benchmark metrics
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.common import FuzzySet,SortedCollection
|
from pyFTS.common import FuzzySet,SortedCollection
|
||||||
@ -240,3 +241,29 @@ def get_interval_statistics(original, model):
|
|||||||
ret.append(round(resolution(forecasts), 2))
|
ret.append(round(resolution(forecasts), 2))
|
||||||
ret.append(round(coverage(original[model.order:], forecasts[:-1]), 2))
|
ret.append(round(coverage(original[model.order:], forecasts[:-1]), 2))
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def get_distribution_statistics(original, model, steps, resolution):
|
||||||
|
ret = list()
|
||||||
|
try:
|
||||||
|
_s1 = time.time()
|
||||||
|
densities1 = model.forecastAheadDistribution(original, steps, parameters=3)
|
||||||
|
_e1 = time.time()
|
||||||
|
ret.append(round(crps(original, densities1), 3))
|
||||||
|
ret.append(round(_e1 - _s1, 3))
|
||||||
|
except Exception as e:
|
||||||
|
print('Erro: ', e)
|
||||||
|
ret.append(np.nan)
|
||||||
|
ret.append(np.nan)
|
||||||
|
|
||||||
|
try:
|
||||||
|
_s2 = time.time()
|
||||||
|
densities2 = model.forecastAheadDistribution(original, steps, parameters=2)
|
||||||
|
_e2 = time.time()
|
||||||
|
ret.append( round(crps(original, densities2), 3))
|
||||||
|
ret.append(round(_e2 - _s2, 3))
|
||||||
|
except:
|
||||||
|
ret.append(np.nan)
|
||||||
|
ret.append(np.nan)
|
||||||
|
|
||||||
|
return ret
|
||||||
|
@ -17,7 +17,7 @@ from mpl_toolkits.mplot3d import Axes3D
|
|||||||
from pyFTS.partitioners import partitioner, Grid, Huarng, Entropy, FCM
|
from pyFTS.partitioners import partitioner, Grid, Huarng, Entropy, FCM
|
||||||
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, ProbabilityDistribution, Util, quantreg
|
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, ProbabilityDistribution, Util, quantreg
|
||||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||||
from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pwfts, ifts, cheng
|
from pyFTS import fts, song, chen, yu, ismailefendi, sadaei, hofts, hwang, pwfts, ifts, cheng, ensemble
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
|
||||||
colors = ['grey', 'rosybrown', 'maroon', 'red','orange', 'yellow', 'olive', 'green',
|
colors = ['grey', 'rosybrown', 'maroon', 'red','orange', 'yellow', 'olive', 'green',
|
||||||
@ -29,24 +29,34 @@ styles = ['-','--','-.',':','.']
|
|||||||
|
|
||||||
nsty = len(styles)
|
nsty = len(styles)
|
||||||
|
|
||||||
|
|
||||||
def get_benchmark_point_methods():
|
def get_benchmark_point_methods():
|
||||||
"""Return all non FTS methods for point forecast"""
|
"""Return all non FTS methods for point forecasting"""
|
||||||
return [naive.Naive, arima.ARIMA, quantreg.QuantileRegression]
|
return [naive.Naive, arima.ARIMA, quantreg.QuantileRegression]
|
||||||
|
|
||||||
|
|
||||||
def get_point_methods():
|
def get_point_methods():
|
||||||
"""Return all FTS methods for point forecast"""
|
"""Return all FTS methods for point forecasting"""
|
||||||
return [chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS, cheng.TrendWeightedFTS,
|
return [song.ConventionalFTS, chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS,
|
||||||
sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS, pwfts.ProbabilisticWeightedFTS]
|
cheng.TrendWeightedFTS, sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS,
|
||||||
|
pwfts.ProbabilisticWeightedFTS]
|
||||||
|
|
||||||
|
|
||||||
def get_benchmark_interval_methods():
|
def get_benchmark_interval_methods():
|
||||||
"""Return all non FTS methods for interval forecast"""
|
"""Return all non FTS methods for interval forecasting"""
|
||||||
return [quantreg.QuantileRegression]
|
return [quantreg.QuantileRegression]
|
||||||
|
|
||||||
|
|
||||||
def get_interval_methods():
|
def get_interval_methods():
|
||||||
"""Return all FTS methods for interval forecast"""
|
"""Return all FTS methods for interval forecasting"""
|
||||||
return [ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS]
|
return [ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS]
|
||||||
|
|
||||||
|
|
||||||
|
def get_probabilistic_methods():
|
||||||
|
"""Return all FTS methods for probabilistic forecasting"""
|
||||||
|
return [quantreg.QuantileRegression, ensemble.EnsembleFTS, pwfts.ProbabilisticWeightedFTS]
|
||||||
|
|
||||||
|
|
||||||
def external_point_sliding_window(models, parameters, data, windowsize,train=0.8, dump=False,
|
def external_point_sliding_window(models, parameters, data, windowsize,train=0.8, dump=False,
|
||||||
save=False, file=None, sintetic=True):
|
save=False, file=None, sintetic=True):
|
||||||
"""
|
"""
|
||||||
@ -628,6 +638,19 @@ def plot_probability_distributions(pmfs, lcolors, tam=[15, 7]):
|
|||||||
|
|
||||||
|
|
||||||
def save_dataframe_ahead(experiments, file, objs, crps_interval, crps_distr, times1, times2, save, sintetic):
|
def save_dataframe_ahead(experiments, file, objs, crps_interval, crps_distr, times1, times2, save, sintetic):
|
||||||
|
"""
|
||||||
|
Save benchmark results for m-step ahead probabilistic forecasters
|
||||||
|
:param experiments:
|
||||||
|
:param file:
|
||||||
|
:param objs:
|
||||||
|
:param crps_interval:
|
||||||
|
:param crps_distr:
|
||||||
|
:param times1:
|
||||||
|
:param times2:
|
||||||
|
:param save:
|
||||||
|
:param sintetic:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
if sintetic:
|
if sintetic:
|
||||||
@ -738,7 +761,7 @@ def ahead_sliding_window(data, windowsize, train, steps, models=None, resolution
|
|||||||
|
|
||||||
_tdiff = _end - _start
|
_tdiff = _end - _start
|
||||||
|
|
||||||
_crps1, _crps2, _t1, _t2 = get_distribution_statistics(test,mfts,steps=steps,resolution=resolution)
|
_crps1, _crps2, _t1, _t2 = Measures.get_distribution_statistics(test,mfts,steps=steps,resolution=resolution)
|
||||||
|
|
||||||
crps_interval[_key].append(_crps1)
|
crps_interval[_key].append(_crps1)
|
||||||
crps_distr[_key].append(_crps2)
|
crps_distr[_key].append(_crps2)
|
||||||
@ -773,7 +796,7 @@ def ahead_sliding_window(data, windowsize, train, steps, models=None, resolution
|
|||||||
|
|
||||||
_tdiff = _end - _start
|
_tdiff = _end - _start
|
||||||
|
|
||||||
_crps1, _crps2, _t1, _t2 = get_distribution_statistics(test, mfts, steps=steps,
|
_crps1, _crps2, _t1, _t2 = Measures.get_distribution_statistics(test, mfts, steps=steps,
|
||||||
resolution=resolution)
|
resolution=resolution)
|
||||||
|
|
||||||
crps_interval[_key].append(_crps1)
|
crps_interval[_key].append(_crps1)
|
||||||
@ -826,36 +849,13 @@ def all_ahead_forecasters(data_train, data_test, partitions, start, steps, resol
|
|||||||
interpol=False, save=save, file=file, tam=tam, resolution=resolution, option=option)
|
interpol=False, save=save, file=file, tam=tam, resolution=resolution, option=option)
|
||||||
|
|
||||||
|
|
||||||
def get_distribution_statistics(original, model, steps, resolution):
|
|
||||||
ret = list()
|
|
||||||
try:
|
|
||||||
_s1 = time.time()
|
|
||||||
densities1 = model.forecastAheadDistribution(original, steps, parameters=3)
|
|
||||||
_e1 = time.time()
|
|
||||||
ret.append(round(Measures.crps(original, densities1), 3))
|
|
||||||
ret.append(round(_e1 - _s1, 3))
|
|
||||||
except Exception as e:
|
|
||||||
print('Erro: ', e)
|
|
||||||
ret.append(np.nan)
|
|
||||||
ret.append(np.nan)
|
|
||||||
|
|
||||||
try:
|
|
||||||
_s2 = time.time()
|
|
||||||
densities2 = model.forecastAheadDistribution(original, steps, parameters=2)
|
|
||||||
_e2 = time.time()
|
|
||||||
ret.append( round(Measures.crps(original, densities2), 3))
|
|
||||||
ret.append(round(_e2 - _s2, 3))
|
|
||||||
except:
|
|
||||||
ret.append(np.nan)
|
|
||||||
ret.append(np.nan)
|
|
||||||
|
|
||||||
return ret
|
|
||||||
|
|
||||||
|
|
||||||
def print_distribution_statistics(original, models, steps, resolution):
|
def print_distribution_statistics(original, models, steps, resolution):
|
||||||
ret = "Model & Order & Interval & Distribution \\\\ \n"
|
ret = "Model & Order & Interval & Distribution \\\\ \n"
|
||||||
for fts in models:
|
for fts in models:
|
||||||
_crps1, _crps2, _t1, _t2 = get_distribution_statistics(original, fts, steps, resolution)
|
_crps1, _crps2, _t1, _t2 = Measures.get_distribution_statistics(original, fts, steps, resolution)
|
||||||
ret += fts.shortname + " & "
|
ret += fts.shortname + " & "
|
||||||
ret += str(fts.order) + " & "
|
ret += str(fts.order) + " & "
|
||||||
ret += str(_crps1) + " & "
|
ret += str(_crps1) + " & "
|
||||||
|
@ -172,7 +172,7 @@ def point_sliding_window(data, windowsize, train=0.8, models=None, partitioners=
|
|||||||
return bUtil.save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u)
|
return bUtil.save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u)
|
||||||
|
|
||||||
|
|
||||||
def run_interval(mfts, partitioner, train_data, test_data, transformation=None, indexer=None):
|
def run_interval(mfts, partitioner, train_data, test_data, window_key=None, transformation=None, indexer=None):
|
||||||
"""
|
"""
|
||||||
Interval forecast benchmark function to be executed on cluster nodes
|
Interval forecast benchmark function to be executed on cluster nodes
|
||||||
:param mfts: FTS model
|
:param mfts: FTS model
|
||||||
@ -211,7 +211,8 @@ def run_interval(mfts, partitioner, train_data, test_data, transformation=None,
|
|||||||
_end = time.time()
|
_end = time.time()
|
||||||
times += _end - _start
|
times += _end - _start
|
||||||
|
|
||||||
ret = {'key': _key, 'obj': mfts, 'sharpness': _sharp, 'resolution': _res, 'coverage': _cov, 'time': times}
|
ret = {'key': _key, 'obj': mfts, 'sharpness': _sharp, 'resolution': _res, 'coverage': _cov, 'time': times,
|
||||||
|
'window': window_key}
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
@ -321,3 +322,163 @@ def interval_sliding_window(data, windowsize, train=0.8, models=None, partitione
|
|||||||
|
|
||||||
return benchmarks.save_dataframe_interval(coverage, experiments, file, objs, resolution, save, sharpness, sintetic,
|
return benchmarks.save_dataframe_interval(coverage, experiments, file, objs, resolution, save, sharpness, sintetic,
|
||||||
times)
|
times)
|
||||||
|
|
||||||
|
|
||||||
|
def run_ahead(mfts, partitioner, train_data, test_data, steps, resolution, window_key=None, transformation=None, indexer=None):
|
||||||
|
"""
|
||||||
|
Probabilistic m-step ahead forecast benchmark function to be executed on cluster nodes
|
||||||
|
:param mfts: FTS model
|
||||||
|
:param partitioner: Universe of Discourse partitioner
|
||||||
|
:param train_data: data used to train the model
|
||||||
|
:param test_data: ata used to test the model
|
||||||
|
:param steps:
|
||||||
|
:param resolution:
|
||||||
|
:param window_key: id of the sliding window
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:return: a dictionary with the benchmark results
|
||||||
|
"""
|
||||||
|
import time
|
||||||
|
from pyFTS import hofts, ifts, pwfts
|
||||||
|
from pyFTS.partitioners import Grid, Entropy, FCM
|
||||||
|
from pyFTS.benchmarks import Measures, arima, quantreg
|
||||||
|
|
||||||
|
tmp = [hofts.HighOrderFTS, ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS, arima.ARIMA, quantreg.QuantileRegression]
|
||||||
|
|
||||||
|
tmp2 = [Grid.GridPartitioner, Entropy.EntropyPartitioner, FCM.FCMPartitioner]
|
||||||
|
|
||||||
|
tmp3 = [Measures.get_distribution_statistics]
|
||||||
|
|
||||||
|
pttr = str(partitioner.__module__).split('.')[-1]
|
||||||
|
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
||||||
|
mfts.partitioner = partitioner
|
||||||
|
if transformation is not None:
|
||||||
|
mfts.appendTransformation(transformation)
|
||||||
|
|
||||||
|
try:
|
||||||
|
_start = time.time()
|
||||||
|
mfts.train(train_data, partitioner.sets, order=mfts.order)
|
||||||
|
_end = time.time()
|
||||||
|
times = _end - _start
|
||||||
|
|
||||||
|
_crps1, _crps2, _t1, _t2 = Measures.get_distribution_statistics(test_data, mfts, steps=steps,
|
||||||
|
resolution=resolution)
|
||||||
|
_t1 += times
|
||||||
|
_t2 += times
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
_crps1 = np.nan
|
||||||
|
_crps2 = np.nan
|
||||||
|
_t1 = np.nan
|
||||||
|
_t2 = np.nan
|
||||||
|
|
||||||
|
ret = {'key': _key, 'obj': mfts, 'CRPS_Interval': _crps1, 'CRPS_Distribution': _crps2, 'TIME_Interval': _t1,
|
||||||
|
'TIME_Distribution': _t2, 'window': window_key}
|
||||||
|
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def ahead_sliding_window(data, windowsize, train, steps,resolution, models=None, partitioners=[Grid.GridPartitioner],
|
||||||
|
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
||||||
|
save=False, file=None, sintetic=False,nodes=None, depends=None):
|
||||||
|
"""
|
||||||
|
Distributed sliding window benchmarks for FTS probabilistic forecasters
|
||||||
|
:param data:
|
||||||
|
:param windowsize: size of sliding window
|
||||||
|
:param train: percentual of sliding window data used to train the models
|
||||||
|
:param steps:
|
||||||
|
:param resolution:
|
||||||
|
:param models: FTS point forecasters
|
||||||
|
:param partitioners: Universe of Discourse partitioner
|
||||||
|
:param partitions: the max number of partitions on the Universe of Discourse
|
||||||
|
:param max_order: the max order of the models (for high order models)
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:param dump:
|
||||||
|
:param save: save results
|
||||||
|
:param file: file path to save the results
|
||||||
|
:param sintetic: if true only the average and standard deviation of the results
|
||||||
|
:param nodes: list of cluster nodes to distribute tasks
|
||||||
|
:param depends: list of module dependencies
|
||||||
|
:return: DataFrame with the results
|
||||||
|
"""
|
||||||
|
cluster = dispy.JobCluster(run_point, nodes=nodes) # , depends=dependencies)
|
||||||
|
|
||||||
|
http_server = dispy.httpd.DispyHTTPServer(cluster)
|
||||||
|
|
||||||
|
_process_start = time.time()
|
||||||
|
|
||||||
|
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
||||||
|
|
||||||
|
pool = []
|
||||||
|
jobs = []
|
||||||
|
objs = {}
|
||||||
|
crps_interval = {}
|
||||||
|
crps_distr = {}
|
||||||
|
times1 = {}
|
||||||
|
times2 = {}
|
||||||
|
|
||||||
|
if models is None:
|
||||||
|
models = benchmarks.get_probabilistic_methods()
|
||||||
|
|
||||||
|
for model in models:
|
||||||
|
mfts = model("")
|
||||||
|
|
||||||
|
if mfts.is_high_order:
|
||||||
|
for order in np.arange(1, max_order + 1):
|
||||||
|
if order >= mfts.min_order:
|
||||||
|
mfts = model("")
|
||||||
|
mfts.order = order
|
||||||
|
pool.append(mfts)
|
||||||
|
else:
|
||||||
|
pool.append(mfts)
|
||||||
|
|
||||||
|
experiments = 0
|
||||||
|
for ct, train, test in Util.sliding_window(data, windowsize, train):
|
||||||
|
experiments += 1
|
||||||
|
|
||||||
|
if dump: print('\nWindow: {0}\n'.format(ct))
|
||||||
|
|
||||||
|
for partition in partitions:
|
||||||
|
|
||||||
|
for partitioner in partitioners:
|
||||||
|
|
||||||
|
data_train_fs = partitioner(train, partition, transformation=transformation)
|
||||||
|
|
||||||
|
for id, m in enumerate(pool,start=0):
|
||||||
|
job = cluster.submit(m, data_train_fs, train, test, ct, transformation)
|
||||||
|
job.id = id # associate an ID to identify jobs (if needed later)
|
||||||
|
jobs.append(job)
|
||||||
|
|
||||||
|
for job in jobs:
|
||||||
|
tmp = job()
|
||||||
|
if job.status == dispy.DispyJob.Finished and tmp is not None:
|
||||||
|
if tmp['key'] not in objs:
|
||||||
|
objs[tmp['key']] = tmp['obj']
|
||||||
|
crps_interval[tmp['key']] = []
|
||||||
|
crps_distr[tmp['key']] = []
|
||||||
|
times1[tmp['key']] = []
|
||||||
|
times2[tmp['key']] = []
|
||||||
|
crps_interval[tmp['key']].append(tmp['CRPS_Interval'])
|
||||||
|
crps_distr[tmp['key']].append(tmp['CRPS_Distribution'])
|
||||||
|
times1[tmp['key']].append(tmp['TIME_Interval'])
|
||||||
|
times2[tmp['key']].append(tmp['TIME_Distribution'])
|
||||||
|
|
||||||
|
else:
|
||||||
|
print(job.exception)
|
||||||
|
print(job.stdout)
|
||||||
|
|
||||||
|
_process_end = time.time()
|
||||||
|
|
||||||
|
print("Process End: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
||||||
|
|
||||||
|
print("Process Duration: {0}".format(_process_end - _process_start))
|
||||||
|
|
||||||
|
cluster.wait() # wait for all jobs to finish
|
||||||
|
|
||||||
|
cluster.print_status()
|
||||||
|
|
||||||
|
http_server.shutdown() # this waits until browser gets all updates
|
||||||
|
cluster.close()
|
||||||
|
|
||||||
|
return benchmarks.save_dataframe_ahead(experiments, file, objs, crps_interval, crps_distr, times1, times2, save, sintetic)
|
||||||
|
@ -18,6 +18,17 @@ from pyFTS.benchmarks import benchmarks
|
|||||||
|
|
||||||
|
|
||||||
def run_point(mfts, partitioner, train_data, test_data, transformation=None, indexer=None):
|
def run_point(mfts, partitioner, train_data, test_data, transformation=None, indexer=None):
|
||||||
|
"""
|
||||||
|
Point forecast benchmark function to be executed on threads
|
||||||
|
:param mfts: FTS model
|
||||||
|
:param partitioner: Universe of Discourse partitioner
|
||||||
|
:param train_data: data used to train the model
|
||||||
|
:param test_data: ata used to test the model
|
||||||
|
:param window_key: id of the sliding window
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:return: a dictionary with the benchmark results
|
||||||
|
"""
|
||||||
pttr = str(partitioner.__module__).split('.')[-1]
|
pttr = str(partitioner.__module__).split('.')[-1]
|
||||||
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
||||||
mfts.partitioner = partitioner
|
mfts.partitioner = partitioner
|
||||||
@ -51,6 +62,23 @@ def run_point(mfts, partitioner, train_data, test_data, transformation=None, ind
|
|||||||
def point_sliding_window(data, windowsize, train=0.8, models=None, partitioners=[Grid.GridPartitioner],
|
def point_sliding_window(data, windowsize, train=0.8, models=None, partitioners=[Grid.GridPartitioner],
|
||||||
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
||||||
save=False, file=None, sintetic=False):
|
save=False, file=None, sintetic=False):
|
||||||
|
"""
|
||||||
|
Parallel sliding window benchmarks for FTS point forecasters
|
||||||
|
:param data:
|
||||||
|
:param windowsize: size of sliding window
|
||||||
|
:param train: percentual of sliding window data used to train the models
|
||||||
|
:param models: FTS point forecasters
|
||||||
|
:param partitioners: Universe of Discourse partitioner
|
||||||
|
:param partitions: the max number of partitions on the Universe of Discourse
|
||||||
|
:param max_order: the max order of the models (for high order models)
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:param dump:
|
||||||
|
:param save: save results
|
||||||
|
:param file: file path to save the results
|
||||||
|
:param sintetic: if true only the average and standard deviation of the results
|
||||||
|
:return: DataFrame with the results
|
||||||
|
"""
|
||||||
_process_start = time.time()
|
_process_start = time.time()
|
||||||
|
|
||||||
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
||||||
@ -116,6 +144,17 @@ def point_sliding_window(data, windowsize, train=0.8, models=None, partitioners=
|
|||||||
|
|
||||||
|
|
||||||
def run_interval(mfts, partitioner, train_data, test_data, transformation=None, indexer=None):
|
def run_interval(mfts, partitioner, train_data, test_data, transformation=None, indexer=None):
|
||||||
|
"""
|
||||||
|
Interval forecast benchmark function to be executed on threads
|
||||||
|
:param mfts: FTS model
|
||||||
|
:param partitioner: Universe of Discourse partitioner
|
||||||
|
:param train_data: data used to train the model
|
||||||
|
:param test_data: ata used to test the model
|
||||||
|
:param window_key: id of the sliding window
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:return: a dictionary with the benchmark results
|
||||||
|
"""
|
||||||
pttr = str(partitioner.__module__).split('.')[-1]
|
pttr = str(partitioner.__module__).split('.')[-1]
|
||||||
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
||||||
mfts.partitioner = partitioner
|
mfts.partitioner = partitioner
|
||||||
@ -149,6 +188,23 @@ def run_interval(mfts, partitioner, train_data, test_data, transformation=None,
|
|||||||
def interval_sliding_window(data, windowsize, train=0.8, models=None, partitioners=[Grid.GridPartitioner],
|
def interval_sliding_window(data, windowsize, train=0.8, models=None, partitioners=[Grid.GridPartitioner],
|
||||||
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
||||||
save=False, file=None, sintetic=False):
|
save=False, file=None, sintetic=False):
|
||||||
|
"""
|
||||||
|
Parallel sliding window benchmarks for FTS interval forecasters
|
||||||
|
:param data:
|
||||||
|
:param windowsize: size of sliding window
|
||||||
|
:param train: percentual of sliding window data used to train the models
|
||||||
|
:param models: FTS point forecasters
|
||||||
|
:param partitioners: Universe of Discourse partitioner
|
||||||
|
:param partitions: the max number of partitions on the Universe of Discourse
|
||||||
|
:param max_order: the max order of the models (for high order models)
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:param dump:
|
||||||
|
:param save: save results
|
||||||
|
:param file: file path to save the results
|
||||||
|
:param sintetic: if true only the average and standard deviation of the results
|
||||||
|
:return: DataFrame with the results
|
||||||
|
"""
|
||||||
_process_start = time.time()
|
_process_start = time.time()
|
||||||
|
|
||||||
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
||||||
@ -215,6 +271,18 @@ def interval_sliding_window(data, windowsize, train=0.8, models=None, partitione
|
|||||||
|
|
||||||
|
|
||||||
def run_ahead(mfts, partitioner, train_data, test_data, steps, resolution, transformation=None, indexer=None):
|
def run_ahead(mfts, partitioner, train_data, test_data, steps, resolution, transformation=None, indexer=None):
|
||||||
|
"""
|
||||||
|
Probabilistic m-step ahead forecast benchmark function to be executed on threads
|
||||||
|
:param mfts: FTS model
|
||||||
|
:param partitioner: Universe of Discourse partitioner
|
||||||
|
:param train_data: data used to train the model
|
||||||
|
:param test_data: ata used to test the model
|
||||||
|
:param steps:
|
||||||
|
:param resolution:
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:return: a dictionary with the benchmark results
|
||||||
|
"""
|
||||||
pttr = str(partitioner.__module__).split('.')[-1]
|
pttr = str(partitioner.__module__).split('.')[-1]
|
||||||
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
||||||
mfts.partitioner = partitioner
|
mfts.partitioner = partitioner
|
||||||
@ -248,6 +316,25 @@ def run_ahead(mfts, partitioner, train_data, test_data, steps, resolution, trans
|
|||||||
def ahead_sliding_window(data, windowsize, train, steps,resolution, models=None, partitioners=[Grid.GridPartitioner],
|
def ahead_sliding_window(data, windowsize, train, steps,resolution, models=None, partitioners=[Grid.GridPartitioner],
|
||||||
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
||||||
save=False, file=None, sintetic=False):
|
save=False, file=None, sintetic=False):
|
||||||
|
"""
|
||||||
|
Parallel sliding window benchmarks for FTS probabilistic forecasters
|
||||||
|
:param data:
|
||||||
|
:param windowsize: size of sliding window
|
||||||
|
:param train: percentual of sliding window data used to train the models
|
||||||
|
:param steps:
|
||||||
|
:param resolution:
|
||||||
|
:param models: FTS point forecasters
|
||||||
|
:param partitioners: Universe of Discourse partitioner
|
||||||
|
:param partitions: the max number of partitions on the Universe of Discourse
|
||||||
|
:param max_order: the max order of the models (for high order models)
|
||||||
|
:param transformation: data transformation
|
||||||
|
:param indexer: seasonal indexer
|
||||||
|
:param dump:
|
||||||
|
:param save: save results
|
||||||
|
:param file: file path to save the results
|
||||||
|
:param sintetic: if true only the average and standard deviation of the results
|
||||||
|
:return: DataFrame with the results
|
||||||
|
"""
|
||||||
_process_start = time.time()
|
_process_start = time.time()
|
||||||
|
|
||||||
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
||||||
|
4
song.py
4
song.py
@ -5,8 +5,8 @@ from pyFTS import fts
|
|||||||
class ConventionalFTS(fts.FTS):
|
class ConventionalFTS(fts.FTS):
|
||||||
"""Conventional Fuzzy Time Series"""
|
"""Conventional Fuzzy Time Series"""
|
||||||
def __init__(self, name, **kwargs):
|
def __init__(self, name, **kwargs):
|
||||||
super(ConventionalFTS, self).__init__(1, "CFTS " + name)
|
super(ConventionalFTS, self).__init__(1, "FTS " + name)
|
||||||
self.name = "Conventional FTS"
|
self.name = "Traditional FTS"
|
||||||
self.detail = "Song & Chissom"
|
self.detail = "Song & Chissom"
|
||||||
self.R = None
|
self.R = None
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user