Improvements on benchmarks.sliding_window_benchmarks for robustness; Bugfixes Hwang and CVFTS methods
This commit is contained in:
parent
a8ed5a3db7
commit
c6f9af8e00
@ -216,7 +216,6 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
|||||||
nodes = kwargs.get("nodes", ['127.0.0.1'])
|
nodes = kwargs.get("nodes", ['127.0.0.1'])
|
||||||
cluster, http_server = cUtil.start_dispy_cluster(experiment_method, nodes)
|
cluster, http_server = cUtil.start_dispy_cluster(experiment_method, nodes)
|
||||||
|
|
||||||
experiments = 0
|
|
||||||
jobs = []
|
jobs = []
|
||||||
|
|
||||||
inc = __pop("inc", 0.1, kwargs)
|
inc = __pop("inc", 0.1, kwargs)
|
||||||
@ -242,8 +241,12 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
|||||||
if not distributed:
|
if not distributed:
|
||||||
if progress:
|
if progress:
|
||||||
progressbar.update(1)
|
progressbar.update(1)
|
||||||
job = experiment_method(deepcopy(model), None, train, test, **kwargs)
|
try:
|
||||||
synthesis_method(dataset, tag, job, conn)
|
job = experiment_method(deepcopy(model), None, train, test, **kwargs)
|
||||||
|
synthesis_method(dataset, tag, job, conn)
|
||||||
|
except Exception as ex:
|
||||||
|
print("Error evaluating model " + model.shortname)
|
||||||
|
print(ex)
|
||||||
else:
|
else:
|
||||||
job = cluster.submit(deepcopy(model), None, train, test, **kwargs)
|
job = cluster.submit(deepcopy(model), None, train, test, **kwargs)
|
||||||
jobs.append(job)
|
jobs.append(job)
|
||||||
@ -257,7 +260,6 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
|||||||
for partition in partitions:
|
for partition in partitions:
|
||||||
|
|
||||||
for partitioner in partitioners_methods:
|
for partitioner in partitioners_methods:
|
||||||
print(transformation, partition)
|
|
||||||
|
|
||||||
data_train_fs = partitioner(data=train, npart=partition, transformation=transformation)
|
data_train_fs = partitioner(data=train, npart=partition, transformation=transformation)
|
||||||
|
|
||||||
@ -276,8 +278,12 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
|||||||
if not distributed:
|
if not distributed:
|
||||||
if progress:
|
if progress:
|
||||||
progressbar.update(1)
|
progressbar.update(1)
|
||||||
job = experiment_method(deepcopy(model), deepcopy(partitioner), train, test, **kwargs)
|
try:
|
||||||
synthesis_method(dataset, tag, job, conn)
|
job = experiment_method(deepcopy(model), deepcopy(partitioner), train, test, **kwargs)
|
||||||
|
synthesis_method(dataset, tag, job, conn)
|
||||||
|
except Exception as ex:
|
||||||
|
print("Error evaluating model " + model.shortname + " " + str(partitioner))
|
||||||
|
print(ex)
|
||||||
else:
|
else:
|
||||||
job = cluster.submit(deepcopy(model), deepcopy(partitioner), train, test, **kwargs)
|
job = cluster.submit(deepcopy(model), deepcopy(partitioner), train, test, **kwargs)
|
||||||
job.id = id # associate an ID to identify jobs (if needed later)
|
job.id = id # associate an ID to identify jobs (if needed later)
|
||||||
|
@ -17,19 +17,16 @@ class HighOrderFTS(fts.FTS):
|
|||||||
self.name = "Hwang High Order FTS"
|
self.name = "Hwang High Order FTS"
|
||||||
self.shortname = "Hwang"
|
self.shortname = "Hwang"
|
||||||
self.detail = "Hwang"
|
self.detail = "Hwang"
|
||||||
|
self.configure_lags(**kwargs)
|
||||||
|
|
||||||
|
def configure_lags(self, **kwargs):
|
||||||
|
if "order" in kwargs:
|
||||||
|
self.order = kwargs.get("order", 2)
|
||||||
|
|
||||||
|
self.max_lag = self.order
|
||||||
|
|
||||||
def forecast(self, ndata, **kwargs):
|
def forecast(self, ndata, **kwargs):
|
||||||
|
|
||||||
if 'order' in kwargs:
|
|
||||||
self.order = kwargs.get('order',self.order)
|
|
||||||
self.max_lag = self.order
|
|
||||||
|
|
||||||
if self.sets == None:
|
|
||||||
self.sets = self.partitioner.sets
|
|
||||||
ordered_sets = self.partitioner.ordered_sets
|
|
||||||
else:
|
|
||||||
ordered_sets = FuzzySet.set_ordered(self.sets)
|
|
||||||
|
|
||||||
l = len(self.sets)
|
l = len(self.sets)
|
||||||
|
|
||||||
cn = np.array([0.0 for k in range(l)])
|
cn = np.array([0.0 for k in range(l)])
|
||||||
@ -42,17 +39,17 @@ class HighOrderFTS(fts.FTS):
|
|||||||
for t in np.arange(self.order-1, len(ndata)):
|
for t in np.arange(self.order-1, len(ndata)):
|
||||||
|
|
||||||
for ix in range(l):
|
for ix in range(l):
|
||||||
s = ordered_sets[ix]
|
s = self.partitioner.ordered_sets[ix]
|
||||||
cn[ix] = self.sets[s].membership( FuzzySet.grant_bounds(ndata[t], self.sets, ordered_sets))
|
cn[ix] = self.sets[s].membership( FuzzySet.grant_bounds(ndata[t], self.sets, self.partitioner.ordered_sets))
|
||||||
for w in range(self.order - 1):
|
for w in np.arange(self.order-1):
|
||||||
ow[w, ix] = self.sets[s].membership(FuzzySet.grant_bounds(ndata[t - w], self.sets, ordered_sets))
|
ow[w, ix] = self.sets[s].membership(FuzzySet.grant_bounds(ndata[t - w], self.sets, self.partitioner.ordered_sets))
|
||||||
rn[w, ix] = ow[w, ix] * cn[ix]
|
rn[w, ix] = ow[w, ix] * cn[ix]
|
||||||
ft[ix] = max(ft[ix], rn[w, ix])
|
ft[ix] = max(ft[ix], rn[w, ix])
|
||||||
mft = max(ft)
|
mft = max(ft)
|
||||||
out = 0.0
|
out = 0.0
|
||||||
count = 0.0
|
count = 0.0
|
||||||
for ix in range(l):
|
for ix in range(l):
|
||||||
s = ordered_sets[ix]
|
s = self.partitioner.ordered_sets[ix]
|
||||||
if ft[ix] == mft:
|
if ft[ix] == mft:
|
||||||
out = out + self.sets[s].centroid
|
out = out + self.sets[s].centroid
|
||||||
count += 1.0
|
count += 1.0
|
||||||
@ -61,4 +58,8 @@ class HighOrderFTS(fts.FTS):
|
|||||||
return ret
|
return ret
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
pass
|
|
||||||
|
if self.sets == None:
|
||||||
|
self.sets = self.partitioner.sets
|
||||||
|
|
||||||
|
self.configure_lags(**kwargs)
|
||||||
|
@ -46,6 +46,7 @@ class ConditionalVarianceFTS(hofts.HighOrderFTS):
|
|||||||
self.uod_clip = False
|
self.uod_clip = False
|
||||||
self.order = 1
|
self.order = 1
|
||||||
self.min_order = 1
|
self.min_order = 1
|
||||||
|
self.max_lag = 1
|
||||||
self.inputs = []
|
self.inputs = []
|
||||||
self.forecasts = []
|
self.forecasts = []
|
||||||
self.residuals = []
|
self.residuals = []
|
||||||
|
@ -39,15 +39,44 @@ from pyFTS.partitioners import Grid, Util as pUtil
|
|||||||
from pyFTS.benchmarks import benchmarks as bchmk
|
from pyFTS.benchmarks import benchmarks as bchmk
|
||||||
from pyFTS.models import chen
|
from pyFTS.models import chen
|
||||||
|
|
||||||
tag = 'chen_partitioning'
|
partitions = {'CMIV': {'BoxCox(0)': 17, 'Differential(1)': 7, 'None': 13},
|
||||||
|
'IMCV': {'BoxCox(0)': 22, 'Differential(1)': 9, 'None': 25},
|
||||||
|
'IMIV': {'BoxCox(0)': 27, 'Differential(1)': 11, 'None': 6},
|
||||||
|
'NASDAQ': {'BoxCox(0)': 39, 'Differential(1)': 10, 'None': 34},
|
||||||
|
'SP500': {'BoxCox(0)': 38, 'Differential(1)': 15, 'None': 39},
|
||||||
|
'TAIEX': {'BoxCox(0)': 36, 'Differential(1)': 18, 'None': 38}}
|
||||||
|
|
||||||
for ds in ['IMIV0']: #datasets.keys():
|
|
||||||
|
tag = 'benchmarks'
|
||||||
|
|
||||||
|
def nsfts_partitioner_builder(data, npart, transformation):
|
||||||
|
from pyFTS.partitioners import Grid
|
||||||
|
from pyFTS.models.nonstationary import perturbation, partitioners
|
||||||
|
|
||||||
|
tmp_fs = Grid.GridPartitioner(data=data, npart=npart, transformation=transformation)
|
||||||
|
fs = partitioners.SimpleNonStationaryPartitioner(data, tmp_fs,
|
||||||
|
location=perturbation.polynomial,
|
||||||
|
location_params=[1, 0],
|
||||||
|
location_roots=0,
|
||||||
|
width=perturbation.polynomial,
|
||||||
|
width_params=[1, 0],
|
||||||
|
width_roots=0)
|
||||||
|
return fs
|
||||||
|
|
||||||
|
|
||||||
|
for ds in datasets.keys():
|
||||||
dataset = datasets[ds]
|
dataset = datasets[ds]
|
||||||
|
|
||||||
bchmk.sliding_window_benchmarks(dataset, 4000, train=0.2, inc=0.2,
|
for tf in transformations.keys():
|
||||||
methods=[chen.ConventionalFTS],
|
transformation = transformations[tf]
|
||||||
benchmark_models=False,
|
|
||||||
transformations=[boxcox], #transformations[t] for t in transformations.keys()],
|
partitioning = partitions[ds][tf]
|
||||||
partitions=np.arange(3, 40, 1),
|
|
||||||
progress=False, type='point',
|
bchmk.sliding_window_benchmarks(dataset, 2000, train=0.2, inc=0.2,
|
||||||
file="nsfts_benchmarks.db", dataset=ds, tag=tag)
|
benchmark_models=False,
|
||||||
|
methods=[cvfts.ConditionalVarianceFTS],
|
||||||
|
partitioners_methods=[nsfts_partitioner_builder],
|
||||||
|
transformations=[transformation],
|
||||||
|
partitions=[partitioning],
|
||||||
|
progress=False, type='point',
|
||||||
|
file="nsfts_benchmarks.db", dataset=ds, tag=tag)
|
Loading…
Reference in New Issue
Block a user