- Ensemble FTS
This commit is contained in:
parent
728e8414b7
commit
bdc7ad233b
@ -24,6 +24,10 @@ class QuantileRegression(fts.FTS):
|
|||||||
|
|
||||||
def train(self, data, sets, order=1, parameters=None):
|
def train(self, data, sets, order=1, parameters=None):
|
||||||
self.order = order
|
self.order = order
|
||||||
|
|
||||||
|
if parameters is not None:
|
||||||
|
self.alpha = parameters
|
||||||
|
|
||||||
tmp = np.array(self.doTransformations(data))
|
tmp = np.array(self.doTransformations(data))
|
||||||
|
|
||||||
lagdata, ndata = lagmat(tmp, maxlag=order, trim="both", original='sep')
|
lagdata, ndata = lagmat(tmp, maxlag=order, trim="both", original='sep')
|
||||||
|
68
ensemble.py
68
ensemble.py
@ -8,6 +8,7 @@ from operator import itemgetter
|
|||||||
from pyFTS.common import FLR, FuzzySet, SortedCollection
|
from pyFTS.common import FLR, FuzzySet, SortedCollection
|
||||||
from pyFTS import fts
|
from pyFTS import fts
|
||||||
|
|
||||||
|
|
||||||
class EnsembleFTS(fts.FTS):
|
class EnsembleFTS(fts.FTS):
|
||||||
def __init__(self, order, name, **kwargs):
|
def __init__(self, order, name, **kwargs):
|
||||||
super(EnsembleFTS, self).__init__("Ensemble FTS")
|
super(EnsembleFTS, self).__init__("Ensemble FTS")
|
||||||
@ -21,20 +22,66 @@ class EnsembleFTS(fts.FTS):
|
|||||||
self.models = []
|
self.models = []
|
||||||
self.parameters = []
|
self.parameters = []
|
||||||
|
|
||||||
def train(self, data, sets, order=1,parameters=None):
|
def build(self, data, models, partitioners, partitions, max_order=3, transformation=None, indexer=None):
|
||||||
|
|
||||||
|
self.models = []
|
||||||
|
|
||||||
|
for count, model in enumerate(models, start=0):
|
||||||
|
mfts = model("")
|
||||||
|
if mfts.benchmark_only:
|
||||||
|
if transformation is not None:
|
||||||
|
mfts.appendTransformation(transformation)
|
||||||
|
mfts.train(data,None, order=1, parameters=None)
|
||||||
|
self.models.append(mfts)
|
||||||
|
else:
|
||||||
|
for partition in partitions:
|
||||||
|
for partitioner in partitioners:
|
||||||
|
data_train_fs = partitioner(data, partition, transformation=transformation)
|
||||||
|
mfts = model("")
|
||||||
|
|
||||||
|
mfts.partitioner = data_train_fs
|
||||||
|
if not mfts.isHighOrder:
|
||||||
|
|
||||||
|
if transformation is not None:
|
||||||
|
mfts.appendTransformation(transformation)
|
||||||
|
|
||||||
|
mfts.train(data, data_train_fs.sets)
|
||||||
|
self.models.append(mfts)
|
||||||
|
else:
|
||||||
|
for order in np.arange(1, max_order + 1):
|
||||||
|
if order >= mfts.minOrder:
|
||||||
|
mfts = model("")
|
||||||
|
mfts.partitioner = data_train_fs
|
||||||
|
|
||||||
|
if transformation is not None:
|
||||||
|
mfts.appendTransformation(transformation)
|
||||||
|
|
||||||
|
mfts.train(data, data_train_fs.sets, order=order)
|
||||||
|
self.models.append(mfts)
|
||||||
|
|
||||||
|
def train(self, data, sets, order=1,parameters=None):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
|
|
||||||
|
method = kwargs.get('method','mean')
|
||||||
|
|
||||||
ndata = np.array(self.doTransformations(data))
|
ndata = np.array(self.doTransformations(data))
|
||||||
|
|
||||||
l = len(ndata)
|
l = len(ndata)
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
for k in np.arange(self.order - 1, l):
|
for k in np.arange(0, l):
|
||||||
pass
|
tmp = []
|
||||||
|
for model in self.models:
|
||||||
|
if k >= model.minOrder - 1:
|
||||||
|
sample = ndata[k - model.order : k]
|
||||||
|
tmp.append( model.forecast(sample) )
|
||||||
|
if method == 'mean':
|
||||||
|
ret.append( np.nanmean(tmp))
|
||||||
|
elif method == 'median':
|
||||||
|
ret.append(np.percentile(tmp,50))
|
||||||
|
|
||||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||||
|
|
||||||
@ -42,14 +89,25 @@ class EnsembleFTS(fts.FTS):
|
|||||||
|
|
||||||
def forecastInterval(self, data, **kwargs):
|
def forecastInterval(self, data, **kwargs):
|
||||||
|
|
||||||
|
method = kwargs.get('method', 'extremum')
|
||||||
|
|
||||||
ndata = np.array(self.doTransformations(data))
|
ndata = np.array(self.doTransformations(data))
|
||||||
|
|
||||||
l = len(ndata)
|
l = len(ndata)
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
for k in np.arange(self.order - 1, l):
|
for k in np.arange(0, l):
|
||||||
pass
|
tmp = []
|
||||||
|
for model in self.models:
|
||||||
|
if k >= model.minOrder - 1:
|
||||||
|
sample = ndata[k - model.order : k]
|
||||||
|
tmp.append( model.forecast(sample) )
|
||||||
|
if method == 'extremum':
|
||||||
|
ret.append( [ min(tmp), max(tmp) ] )
|
||||||
|
elif method == 'quantile':
|
||||||
|
q = kwargs.get('q', [.05, .95])
|
||||||
|
ret.append(np.percentile(tmp,q=q*100))
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user