Refactoring to allow more tasks automotion

This commit is contained in:
Petrônio Cândido de Lima e Silva 2017-01-23 11:00:27 -02:00
parent 30ffb89465
commit b909bdac5d
12 changed files with 100 additions and 46 deletions

View File

@ -11,19 +11,58 @@ from mpl_toolkits.mplot3d import Axes3D
from pyFTS.benchmarks import Measures from pyFTS.benchmarks import Measures
from pyFTS.partitioners import Grid from pyFTS.partitioners import Grid
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
from pyFTS import pfts from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pfts, ifts
def allPointForecasters(data_train, data_test, partitions, max_order=2,save=False, file=None, tam=[20, 5]):
models = [chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS, sadaei.ExponentialyWeightedFTS,
hwang.HighOrderFTS, hofts.HighOrderFTS, pfts.ProbabilisticFTS ]
objects = []
data_train_fs = Grid.GridPartitionerTrimf(data_train,partitions)
for model in models:
fts = model("")
if not fts.isHighOrder:
fts.train(data_train, data_train_fs)
objects.append(fts)
else:
for order in np.arange(1,max_order+1):
fts.train(data_train, data_train_fs, order=order)
fts.shortname += str(order)
objects.append(fts)
print(getPointStatistics(data_test, objects))
def getPointStatistics(original, models, externalmodels = None, externalforecasts = None):
ret = "Model & RMSE & MAPE \\ \n"
for fts in models:
forecasts = fts.forecast(original)
ret += fts.shortname + " & "
ret += str(round(Measures.rmse(original[fts.order:], forecasts[:-1]), 2)) + " & "
ret += str(round(Measures.mape(original[fts.order:], forecasts[:-1]), 2)) + " & "
ret += " \\ \n"
l = len(externalmodels)
for k in np.arange(0,l):
ret += externalmodels[k] + " & "
ret += str(round(Measures.rmse(original[fts.order:], externalforecasts[k][:-1]), 2)) + " & "
ret += str(round(Measures.mape(original[fts.order:], externalforecasts[k][:-1]), 2)) + " & "
ret += " \\ \n"
return ret
def getIntervalStatistics(original, models): def getIntervalStatistics(original, models):
ret = "Model & RMSE & MAPE & Sharpness & Resolution & Coverage \\ \n" ret = "Model & RMSE & MAPE & Sharpness & Resolution & Coverage \\ \n"
for fts in models: for fts in models:
forecasts = fts.forecast(original) forecasts = fts.forecastInterval(original)
ret = ret + fts.shortname + " & " ret += fts.shortname + " & "
ret = ret + str(round(Measures.rmse_interval(original[fts.order - 1:], forecasts), 2)) + " & " ret += str(round(Measures.rmse_interval(original[fts.order:], forecasts[:-1]), 2)) + " & "
ret = ret + str(round(Measures.mape_interval(original[fts.order - 1:], forecasts), 2)) + " & " ret += str(round(Measures.mape_interval(original[fts.order:], forecasts[:-1]), 2)) + " & "
ret = ret + str(round(Measures.sharpness(forecasts), 2)) + " & " ret += str(round(Measures.sharpness(forecasts), 2)) + " & "
ret = ret + str(round(Measures.resolution(forecasts), 2)) + " & " ret += str(round(Measures.resolution(forecasts), 2)) + " & "
ret = ret + str(round(Measures.coverage(original[fts.order - 1:], forecasts), 2)) + " \\ \n" ret += str(round(Measures.coverage(original[fts.order:], forecasts[:-1]), 2)) + " \\ \n"
return ret return ret

View File

@ -38,7 +38,7 @@ class ConventionalFTS(fts.FTS):
flrgs[flr.LHS.name].append(flr.RHS) flrgs[flr.LHS.name].append(flr.RHS)
return (flrgs) return (flrgs)
def train(self, data, sets): def train(self, data, sets,order=1,parameters=None):
self.sets = sets self.sets = sets
tmpdata = FuzzySet.fuzzySeries(data, sets) tmpdata = FuzzySet.fuzzySeries(data, sets)
flrs = FLR.generateNonRecurrentFLRs(tmpdata) flrs = FLR.generateNonRecurrentFLRs(tmpdata)

View File

@ -3,10 +3,10 @@ import math
from pyFTS import * from pyFTS import *
def differential(original): def differential(original, lags=1):
n = len(original) n = len(original)
diff = [original[t - 1] - original[t] for t in np.arange(1, n)] diff = [original[t - lags] - original[t] for t in np.arange(lags, n)]
diff.insert(0, 0) for t in np.arange(0, lags): diff.insert(0, None)
return np.array(diff) return np.array(diff)
@ -24,3 +24,12 @@ def Z(original):
sigma = np.std(original) sigma = np.std(original)
z = [(k - mu)/sigma for k in original] z = [(k - mu)/sigma for k in original]
return z return z
# retrieved from Sadaei and Lee (2014) - Multilayer Stock ForecastingModel Using Fuzzy Time Series
def roi(original):
n = len(original)
roi = []
for t in np.arange(0, n-1):
roi.append( (original[t+1] - original[t])/original[t] )
return roi

3
fts.py
View File

@ -10,6 +10,7 @@ class FTS:
self.shortname = name self.shortname = name
self.name = name self.name = name
self.detail = name self.detail = name
self.isHighOrder = False
self.hasSeasonality = False self.hasSeasonality = False
self.hasPointForecasting = True self.hasPointForecasting = True
self.hasIntervalForecasting = False self.hasIntervalForecasting = False
@ -45,7 +46,7 @@ class FTS:
def forecastAheadDistribution(self, data, steps): def forecastAheadDistribution(self, data, steps):
pass pass
def train(self, data, sets, order=1): def train(self, data, sets,order=1, parameters=None):
pass pass
def getMidpoints(self, flrg): def getMidpoints(self, flrg):

View File

@ -41,6 +41,7 @@ class HighOrderFTS(fts.FTS):
self.detail = "Chen" self.detail = "Chen"
self.order = 1 self.order = 1
self.setsDict = {} self.setsDict = {}
self.isHighOrder = True
def generateFLRG(self, flrs): def generateFLRG(self, flrs):
flrgs = {} flrgs = {}
@ -58,7 +59,7 @@ class HighOrderFTS(fts.FTS):
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS) flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
return (flrgs) return (flrgs)
def train(self, data, sets, order): def train(self, data, sets, order=1,parameters=None):
self.order = order self.order = order
self.sets = sets self.sets = sets
for s in self.sets: self.setsDict[s.name] = s for s in self.sets: self.setsDict[s.name] = s

View File

@ -6,13 +6,18 @@ from pyFTS import fts
class HighOrderFTS(fts.FTS): class HighOrderFTS(fts.FTS):
def __init__(self, order, name): def __init__(self, order, name):
super(HighOrderFTS, self).__init__(order, name) super(HighOrderFTS, self).__init__(order, name)
self.isHighOrder = True
def forecast(self, data, t): def forecast(self, data):
cn = np.array([0.0 for k in range(len(self.sets))]) cn = np.array([0.0 for k in range(len(self.sets))])
ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)]) ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)]) rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
ft = np.array([0.0 for k in range(len(self.sets))]) ft = np.array([0.0 for k in range(len(self.sets))])
ret = []
for t in np.arange(self.order, len(data)):
for s in range(len(self.sets)): for s in range(len(self.sets)):
cn[s] = self.sets[s].membership(data[t]) cn[s] = self.sets[s].membership(data[t])
for w in range(self.order - 1): for w in range(self.order - 1):
@ -26,13 +31,10 @@ class HighOrderFTS(fts.FTS):
if ft[s] == mft: if ft[s] == mft:
out = out + self.sets[s].centroid out = out + self.sets[s].centroid
count = count + 1.0 count = count + 1.0
return out / count ret.append(out / count)
def train(self, data, sets): return ret
def train(self, data, sets, order=2, parameters=None):
self.sets = sets self.sets = sets
self.order = order
def predict(self, data, t):
return self.forecast(data, t)
def predictDiff(self, data, t):
return data[t] + self.forecast(Transformations.differential(data), t)

View File

@ -15,6 +15,7 @@ class IntervalFTS(hofts.HighOrderFTS):
self.flrgs = {} self.flrgs = {}
self.hasPointForecasting = False self.hasPointForecasting = False
self.hasIntervalForecasting = True self.hasIntervalForecasting = True
self.isHighOrder = True
def getUpper(self, flrg): def getUpper(self, flrg):
if flrg.strLHS() in self.flrgs: if flrg.strLHS() in self.flrgs:

View File

@ -1,6 +1,6 @@
import numpy as np import numpy as np
from pyFTS.common import FuzzySet,FLR from pyFTS.common import FuzzySet,FLR
import fts from pyFTS import fts
class ImprovedWeightedFLRG: class ImprovedWeightedFLRG:
@ -46,7 +46,7 @@ class ImprovedWeightedFTS(fts.FTS):
flrgs[flr.LHS.name].append(flr.RHS) flrgs[flr.LHS.name].append(flr.RHS)
return (flrgs) return (flrgs)
def train(self, data, sets): def train(self, data, sets,order=1,parameters=None):
self.sets = sets self.sets = sets
for s in self.sets: self.setsDict[s.name] = s for s in self.sets: self.setsDict[s.name] = s

View File

@ -46,6 +46,7 @@ class ProbabilisticFTS(ifts.IntervalFTS):
self.hasPointForecasting = True self.hasPointForecasting = True
self.hasIntervalForecasting = True self.hasIntervalForecasting = True
self.hasDistributionForecasting = True self.hasDistributionForecasting = True
self.isHighOrder = True
def generateFLRG(self, flrs): def generateFLRG(self, flrs):
flrgs = {} flrgs = {}

View File

@ -1,6 +1,6 @@
import numpy as np import numpy as np
from pyFTS.common import FuzzySet,FLR from pyFTS.common import FuzzySet,FLR
import fts from pyFTS import fts
class ExponentialyWeightedFLRG: class ExponentialyWeightedFLRG:
def __init__(self, LHS, c): def __init__(self, LHS, c):
@ -49,8 +49,8 @@ class ExponentialyWeightedFTS(fts.FTS):
flrgs[flr.LHS.name].append(flr.RHS) flrgs[flr.LHS.name].append(flr.RHS)
return (flrgs) return (flrgs)
def train(self, data, sets, c): def train(self, data, sets,order=1,parameters=2):
self.c = c self.c = parameters
self.sets = sets self.sets = sets
tmpdata = FuzzySet.fuzzySeries(data, sets) tmpdata = FuzzySet.fuzzySeries(data, sets)
flrs = FLR.generateRecurrentFLRs(tmpdata) flrs = FLR.generateRecurrentFLRs(tmpdata)

View File

@ -44,9 +44,9 @@ class SeasonalFTS(fts.FTS):
return (flrgs) return (flrgs)
def train(self, data, sets, seasonality): def train(self, data, sets, order=1,parameters=12):
self.sets = sets self.sets = sets
self.seasonality = seasonality self.seasonality = parameters
tmpdata = FuzzySet.fuzzySeries(data, sets) tmpdata = FuzzySet.fuzzySeries(data, sets)
flrs = FLR.generateRecurrentFLRs(tmpdata) flrs = FLR.generateRecurrentFLRs(tmpdata)
self.flrgs = self.generateFLRG(flrs) self.flrgs = self.generateFLRG(flrs)

4
yu.py
View File

@ -1,6 +1,6 @@
import numpy as np import numpy as np
from pyFTS.common import FuzzySet,FLR from pyFTS.common import FuzzySet,FLR
import fts from pyFTS import fts
class WeightedFLRG(fts.FTS): class WeightedFLRG(fts.FTS):
@ -46,7 +46,7 @@ class WeightedFTS(fts.FTS):
flrgs[flr.LHS.name].append(flr.RHS) flrgs[flr.LHS.name].append(flr.RHS)
return (flrgs) return (flrgs)
def train(self, data, sets): def train(self, data, sets,order=1,parameters=None):
self.sets = sets self.sets = sets
tmpdata = FuzzySet.fuzzySeries(data, sets) tmpdata = FuzzySet.fuzzySeries(data, sets)
flrs = FLR.generateRecurrentFLRs(tmpdata) flrs = FLR.generateRecurrentFLRs(tmpdata)