Split ifts.IntervalFTS(HighOrderFTS) from WeightedIntervalFTS(WeightedHighOrderFTS)

This commit is contained in:
Petrônio Cândido 2019-05-20 11:27:59 -03:00
parent f72bde7c83
commit aa721c912f

View File

@ -13,7 +13,7 @@ from pyFTS.common import FuzzySet, FLR, fts, tree
from pyFTS.models import hofts from pyFTS.models import hofts
class IntervalFTS(hofts.WeightedHighOrderFTS): class IntervalFTS(hofts.HighOrderFTS):
""" """
High Order Interval Fuzzy Time Series High Order Interval Fuzzy Time Series
""" """
@ -87,3 +87,79 @@ class IntervalFTS(hofts.WeightedHighOrderFTS):
ret.append([lo_, up_]) ret.append([lo_, up_])
return ret return ret
class WeightedIntervalFTS(hofts.WeightedHighOrderFTS):
"""
Weighted High Order Interval Fuzzy Time Series
"""
def __init__(self, **kwargs):
super(IntervalFTS, self).__init__(**kwargs)
self.shortname = "IFTS"
self.name = "Interval FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H. (2016)"
self.flrgs = {}
self.has_point_forecasting = False
self.has_interval_forecasting = True
self.is_high_order = True
self.min_order = 1
def get_upper(self, flrg):
ret = np.nan
if len(flrg.LHS) > 0:
if flrg.get_key() in self.flrgs:
tmp = self.flrgs[flrg.get_key()]
ret = tmp.get_upper(self.sets)
else:
ret = self.sets[flrg.LHS[-1]].upper
return ret
def get_lower(self, flrg):
ret = np.nan
if len(flrg.LHS) > 0:
if flrg.get_key() in self.flrgs:
tmp = self.flrgs[flrg.get_key()]
ret = tmp.get_lower(self.partitioner.sets)
else:
ret = self.partitioner.sets[flrg.LHS[-1]].lower
return ret
def get_sequence_membership(self, data, fuzzySets):
mb = [fuzzySets[k].membership(data[k]) for k in np.arange(0, len(data))]
return mb
def forecast_interval(self, ndata, **kwargs):
ret = []
l = len(ndata)
if l <= self.order:
return ndata
for k in np.arange(self.max_lag, l+1):
sample = ndata[k - self.max_lag: k]
flrgs = self.generate_lhs_flrg(sample)
up = []
lo = []
affected_flrgs_memberships = []
for flrg in flrgs:
if len(flrg.LHS) > 0:
mv = flrg.get_membership(sample, self.sets)
up.append(mv * self.get_upper(flrg))
lo.append(mv * self.get_lower(flrg))
affected_flrgs_memberships.append(mv)
# gerar o intervalo
norm = sum(affected_flrgs_memberships)
lo_ = sum(lo) / norm
up_ = sum(up) / norm
ret.append([lo_, up_])
return ret