Bugfixes in DEHO
This commit is contained in:
parent
5b7e4edcd7
commit
9efe7ba453
@ -76,24 +76,10 @@ def random_genotype(**kwargs):
|
|||||||
|
|
||||||
for v in explanatory_variables:
|
for v in explanatory_variables:
|
||||||
var = vars[v]
|
var = vars[v]
|
||||||
if var['type'] == 'common':
|
param = random_param(var)
|
||||||
npart = random.randint(7, 50)
|
|
||||||
else:
|
|
||||||
npart = var['npart']
|
|
||||||
param = {
|
|
||||||
'mf': random.randint(1, 4),
|
|
||||||
'npart': npart,
|
|
||||||
'partitioner': 1, #random.randint(1, 2),
|
|
||||||
'alpha': random.uniform(0, .5)
|
|
||||||
}
|
|
||||||
explanatory_params.append(param)
|
explanatory_params.append(param)
|
||||||
|
|
||||||
target_params = {
|
target_params = random_param(tvar)
|
||||||
'mf': random.randint(1, 4),
|
|
||||||
'npart': random.randint(7, 50),
|
|
||||||
'partitioner': 1, #random.randint(1, 2),
|
|
||||||
'alpha': random.uniform(0, .5)
|
|
||||||
}
|
|
||||||
|
|
||||||
return genotype(
|
return genotype(
|
||||||
explanatory_variables,
|
explanatory_variables,
|
||||||
@ -102,6 +88,20 @@ def random_genotype(**kwargs):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def random_param(var):
|
||||||
|
if var['type'] == 'common':
|
||||||
|
npart = random.randint(7, 50)
|
||||||
|
else:
|
||||||
|
npart = var['npart']
|
||||||
|
param = {
|
||||||
|
'mf': random.randint(1, 4),
|
||||||
|
'npart': npart,
|
||||||
|
'partitioner': 1, # random.randint(1, 2),
|
||||||
|
'alpha': random.uniform(0, .5)
|
||||||
|
}
|
||||||
|
return param
|
||||||
|
|
||||||
|
|
||||||
def phenotype(individual, train, fts_method, parameters={}, **kwargs):
|
def phenotype(individual, train, fts_method, parameters={}, **kwargs):
|
||||||
vars = kwargs.get('variables', None)
|
vars = kwargs.get('variables', None)
|
||||||
tvar = kwargs.get('target_variable', None)
|
tvar = kwargs.get('target_variable', None)
|
||||||
@ -246,6 +246,10 @@ def crossover(population, **kwargs):
|
|||||||
"""
|
"""
|
||||||
import random
|
import random
|
||||||
|
|
||||||
|
vars = kwargs.get('variables', None)
|
||||||
|
|
||||||
|
tvar = kwargs.get('target_variable', None)
|
||||||
|
|
||||||
n = len(population) - 1
|
n = len(population) - 1
|
||||||
|
|
||||||
r1,r2 = 0,0
|
r1,r2 = 0,0
|
||||||
@ -280,7 +284,7 @@ def crossover(population, **kwargs):
|
|||||||
if ix in best['explanatory_variables'] and ix in worst['explanatory_variables']:
|
if ix in best['explanatory_variables'] and ix in worst['explanatory_variables']:
|
||||||
bix = best['explanatory_variables'].index(ix)
|
bix = best['explanatory_variables'].index(ix)
|
||||||
wix = worst['explanatory_variables'].index(ix)
|
wix = worst['explanatory_variables'].index(ix)
|
||||||
param = crossover_variable_params(best['explanatory_params'][bix], worst['explanatory_params'][wix])
|
param = crossover_variable_params(best['explanatory_params'][bix], worst['explanatory_params'][wix], vars[ix])
|
||||||
elif ix in best['explanatory_variables']:
|
elif ix in best['explanatory_variables']:
|
||||||
bix = best['explanatory_variables'].index(ix)
|
bix = best['explanatory_variables'].index(ix)
|
||||||
param = best['explanatory_params'][bix]
|
param = best['explanatory_params'][bix]
|
||||||
@ -291,15 +295,18 @@ def crossover(population, **kwargs):
|
|||||||
explanatory_variables.append(ix)
|
explanatory_variables.append(ix)
|
||||||
explanatory_params.append(param)
|
explanatory_params.append(param)
|
||||||
|
|
||||||
tparams = crossover_variable_params(best['target_params'], worst['target_params'])
|
tparams = crossover_variable_params(best['target_params'], worst['target_params'], tvar)
|
||||||
|
|
||||||
descendent = genotype(explanatory_variables, explanatory_params, tparams, None, None)
|
descendent = genotype(explanatory_variables, explanatory_params, tparams)
|
||||||
|
|
||||||
return descendent
|
return descendent
|
||||||
|
|
||||||
|
|
||||||
def crossover_variable_params(best, worst):
|
def crossover_variable_params(best, worst, var):
|
||||||
npart = int(round(.7 * best['npart'] + .3 * worst['npart']))
|
if var['type'] == 'common':
|
||||||
|
npart = int(round(.7 * best['npart'] + .3 * worst['npart']))
|
||||||
|
else:
|
||||||
|
npart = best['npart']
|
||||||
alpha = float(.7 * best['alpha'] + .3 * worst['alpha'])
|
alpha = float(.7 * best['alpha'] + .3 * worst['alpha'])
|
||||||
rnd = random.uniform(0, 1)
|
rnd = random.uniform(0, 1)
|
||||||
mf = best['mf'] if rnd < .7 else worst['mf']
|
mf = best['mf'] if rnd < .7 else worst['mf']
|
||||||
@ -317,14 +324,32 @@ def mutation(individual, **kwargs):
|
|||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
vars = kwargs.get('variables', None)
|
||||||
|
tvar = kwargs.get('target_variable', None)
|
||||||
|
l = len(vars)
|
||||||
|
|
||||||
|
il = len(individual['explanatory_variables'])
|
||||||
|
rnd = random.uniform(0, 1)
|
||||||
|
if rnd > .9 and il > 1:
|
||||||
|
rnd = random.randint(0, il-1)
|
||||||
|
val = individual['explanatory_variables'][rnd]
|
||||||
|
individual['explanatory_variables'].remove(val)
|
||||||
|
individual['explanatory_params'].pop(rnd)
|
||||||
|
elif rnd < .1 and il < l:
|
||||||
|
rnd = random.randint(0, l-1)
|
||||||
|
while rnd in individual['explanatory_variables']:
|
||||||
|
rnd = random.randint(0, l-1)
|
||||||
|
individual['explanatory_variables'].append(rnd)
|
||||||
|
individual['explanatory_params'].append(random_param(vars[rnd]))
|
||||||
|
|
||||||
for ct in np.arange(len(individual['explanatory_variables'])):
|
for ct in np.arange(len(individual['explanatory_variables'])):
|
||||||
rnd = random.uniform(0, 1)
|
rnd = random.uniform(0, 1)
|
||||||
if rnd > .5:
|
if rnd > .5:
|
||||||
mutate_variable_params(individual['explanatory_params'][ct])
|
mutate_variable_params(individual['explanatory_params'][ct], vars[ct])
|
||||||
|
|
||||||
rnd = random.uniform(0, 1)
|
rnd = random.uniform(0, 1)
|
||||||
if rnd > .5:
|
if rnd > .5:
|
||||||
mutate_variable_params(individual['target_params'])
|
mutate_variable_params(individual['target_params'], tvar)
|
||||||
|
|
||||||
individual['f1'] = None
|
individual['f1'] = None
|
||||||
individual['f2'] = None
|
individual['f2'] = None
|
||||||
@ -332,8 +357,9 @@ def mutation(individual, **kwargs):
|
|||||||
return individual
|
return individual
|
||||||
|
|
||||||
|
|
||||||
def mutate_variable_params(param):
|
def mutate_variable_params(param, var):
|
||||||
param['npart'] = min(50, max(3, int(param['npart'] + np.random.normal(0, 4))))
|
if var['type']=='common':
|
||||||
|
param['npart'] = min(50, max(3, int(param['npart'] + np.random.normal(0, 4))))
|
||||||
param['alpha'] = min(.5, max(0, param['alpha'] + np.random.normal(0, .5)))
|
param['alpha'] = min(.5, max(0, param['alpha'] + np.random.normal(0, .5)))
|
||||||
param['mf'] = random.randint(1, 4)
|
param['mf'] = random.randint(1, 4)
|
||||||
param['partitioner'] = random.randint(1, 2)
|
param['partitioner'] = random.randint(1, 2)
|
||||||
@ -428,7 +454,7 @@ def persist_statistics(datasetname, statistics):
|
|||||||
|
|
||||||
def log_result(datasetname, fts_method, result):
|
def log_result(datasetname, fts_method, result):
|
||||||
import json
|
import json
|
||||||
with open('result_{}{}.json'.format(fts_method,datasetname), 'w') as file:
|
with open('result_{}{}.json'.format(fts_method,datasetname), 'a+') as file:
|
||||||
file.write(json.dumps(result))
|
file.write(json.dumps(result))
|
||||||
|
|
||||||
print(result)
|
print(result)
|
||||||
|
@ -156,9 +156,12 @@ class Partitioner(object):
|
|||||||
nearest = self.search(data, type='index')
|
nearest = self.search(data, type='index')
|
||||||
mv = np.zeros(self.partitions)
|
mv = np.zeros(self.partitions)
|
||||||
|
|
||||||
for ix in nearest:
|
try:
|
||||||
tmp = self[ix].membership(data)
|
for ix in nearest:
|
||||||
mv[ix] = tmp if tmp >= alpha_cut else 0.
|
tmp = self[ix].membership(data)
|
||||||
|
mv[ix] = tmp if tmp >= alpha_cut else 0.
|
||||||
|
except:
|
||||||
|
print(ix)
|
||||||
|
|
||||||
ix = np.ravel(np.argwhere(mv > 0.))
|
ix = np.ravel(np.argwhere(mv > 0.))
|
||||||
|
|
||||||
@ -316,19 +319,16 @@ class Partitioner(object):
|
|||||||
it represents the fuzzy set name.
|
it represents the fuzzy set name.
|
||||||
:return: the fuzzy set
|
:return: the fuzzy set
|
||||||
"""
|
"""
|
||||||
try:
|
if isinstance(item, (int, np.int, np.int8, np.int16, np.int32, np.int64)):
|
||||||
if isinstance(item, (int, np.int, np.int8, np.int16, np.int32, np.int64)):
|
if item < 0 or item >= self.partitions:
|
||||||
if item < 0 or item >= self.partitions:
|
raise ValueError("The fuzzy set index must be between 0 and {}.".format(self.partitions))
|
||||||
raise ValueError("The fuzzy set index must be between 0 and {}.".format(self.partitions))
|
return self.sets[self.ordered_sets[item]]
|
||||||
return self.sets[self.ordered_sets[item]]
|
elif isinstance(item, str):
|
||||||
elif isinstance(item, str):
|
if item not in self.sets:
|
||||||
if item not in self.sets:
|
raise ValueError("The fuzzy set with name {} does not exist.".format(item))
|
||||||
raise ValueError("The fuzzy set with name {} does not exist.".format(item))
|
return self.sets[item]
|
||||||
return self.sets[item]
|
else:
|
||||||
else:
|
raise ValueError("The parameter 'item' must be an integer or a string and the value informed was {} of type {}!".format(item, type(item)))
|
||||||
raise ValueError("The parameter 'item' must be an integer or a string and the value informed was {} of type {}!".format(item, type(item)))
|
|
||||||
except Exception as ex:
|
|
||||||
logging.exception("Error")
|
|
||||||
|
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
|
@ -50,14 +50,14 @@ explanatory_variables =[
|
|||||||
{'name': 'Temperature', 'data_label': 'temperature', 'type': 'common'},
|
{'name': 'Temperature', 'data_label': 'temperature', 'type': 'common'},
|
||||||
{'name': 'Daily', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.minute_of_day, 'npart': 24 },
|
{'name': 'Daily', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.minute_of_day, 'npart': 24 },
|
||||||
{'name': 'Weekly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_week, 'npart': 7 },
|
{'name': 'Weekly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_week, 'npart': 7 },
|
||||||
#{'name': 'Monthly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_month, 'npart': 4 },
|
{'name': 'Monthly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_month, 'npart': 4 },
|
||||||
{'name': 'Yearly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_year, 'npart': 12 }
|
{'name': 'Yearly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_year, 'npart': 12 }
|
||||||
]
|
]
|
||||||
|
|
||||||
target_variable = {'name': 'Load', 'data_label': 'load', 'type': 'common'}
|
target_variable = {'name': 'Load', 'data_label': 'load', 'type': 'common'}
|
||||||
nodes=['192.168.28.38']
|
nodes=['192.168.28.38']
|
||||||
deho_mv.execute(datsetname, dataset,
|
deho_mv.execute(datsetname, dataset,
|
||||||
ngen=10, npop=10,psel=0.6, pcross=.5, pmut=.3,
|
ngen=20, npop=15,psel=0.6, pcross=.5, pmut=.3,
|
||||||
window_size=2000, train_rate=.9, increment_rate=1,
|
window_size=2000, train_rate=.9, increment_rate=1,
|
||||||
experiments=1,
|
experiments=1,
|
||||||
fts_method=wmvfts.WeightedMVFTS,
|
fts_method=wmvfts.WeightedMVFTS,
|
||||||
|
Loading…
Reference in New Issue
Block a user