Bugfixes in DEHO
This commit is contained in:
parent
5b7e4edcd7
commit
9efe7ba453
@ -76,24 +76,10 @@ def random_genotype(**kwargs):
|
||||
|
||||
for v in explanatory_variables:
|
||||
var = vars[v]
|
||||
if var['type'] == 'common':
|
||||
npart = random.randint(7, 50)
|
||||
else:
|
||||
npart = var['npart']
|
||||
param = {
|
||||
'mf': random.randint(1, 4),
|
||||
'npart': npart,
|
||||
'partitioner': 1, #random.randint(1, 2),
|
||||
'alpha': random.uniform(0, .5)
|
||||
}
|
||||
param = random_param(var)
|
||||
explanatory_params.append(param)
|
||||
|
||||
target_params = {
|
||||
'mf': random.randint(1, 4),
|
||||
'npart': random.randint(7, 50),
|
||||
'partitioner': 1, #random.randint(1, 2),
|
||||
'alpha': random.uniform(0, .5)
|
||||
}
|
||||
target_params = random_param(tvar)
|
||||
|
||||
return genotype(
|
||||
explanatory_variables,
|
||||
@ -102,6 +88,20 @@ def random_genotype(**kwargs):
|
||||
)
|
||||
|
||||
|
||||
def random_param(var):
|
||||
if var['type'] == 'common':
|
||||
npart = random.randint(7, 50)
|
||||
else:
|
||||
npart = var['npart']
|
||||
param = {
|
||||
'mf': random.randint(1, 4),
|
||||
'npart': npart,
|
||||
'partitioner': 1, # random.randint(1, 2),
|
||||
'alpha': random.uniform(0, .5)
|
||||
}
|
||||
return param
|
||||
|
||||
|
||||
def phenotype(individual, train, fts_method, parameters={}, **kwargs):
|
||||
vars = kwargs.get('variables', None)
|
||||
tvar = kwargs.get('target_variable', None)
|
||||
@ -246,6 +246,10 @@ def crossover(population, **kwargs):
|
||||
"""
|
||||
import random
|
||||
|
||||
vars = kwargs.get('variables', None)
|
||||
|
||||
tvar = kwargs.get('target_variable', None)
|
||||
|
||||
n = len(population) - 1
|
||||
|
||||
r1,r2 = 0,0
|
||||
@ -280,7 +284,7 @@ def crossover(population, **kwargs):
|
||||
if ix in best['explanatory_variables'] and ix in worst['explanatory_variables']:
|
||||
bix = best['explanatory_variables'].index(ix)
|
||||
wix = worst['explanatory_variables'].index(ix)
|
||||
param = crossover_variable_params(best['explanatory_params'][bix], worst['explanatory_params'][wix])
|
||||
param = crossover_variable_params(best['explanatory_params'][bix], worst['explanatory_params'][wix], vars[ix])
|
||||
elif ix in best['explanatory_variables']:
|
||||
bix = best['explanatory_variables'].index(ix)
|
||||
param = best['explanatory_params'][bix]
|
||||
@ -291,15 +295,18 @@ def crossover(population, **kwargs):
|
||||
explanatory_variables.append(ix)
|
||||
explanatory_params.append(param)
|
||||
|
||||
tparams = crossover_variable_params(best['target_params'], worst['target_params'])
|
||||
tparams = crossover_variable_params(best['target_params'], worst['target_params'], tvar)
|
||||
|
||||
descendent = genotype(explanatory_variables, explanatory_params, tparams, None, None)
|
||||
descendent = genotype(explanatory_variables, explanatory_params, tparams)
|
||||
|
||||
return descendent
|
||||
|
||||
|
||||
def crossover_variable_params(best, worst):
|
||||
npart = int(round(.7 * best['npart'] + .3 * worst['npart']))
|
||||
def crossover_variable_params(best, worst, var):
|
||||
if var['type'] == 'common':
|
||||
npart = int(round(.7 * best['npart'] + .3 * worst['npart']))
|
||||
else:
|
||||
npart = best['npart']
|
||||
alpha = float(.7 * best['alpha'] + .3 * worst['alpha'])
|
||||
rnd = random.uniform(0, 1)
|
||||
mf = best['mf'] if rnd < .7 else worst['mf']
|
||||
@ -317,14 +324,32 @@ def mutation(individual, **kwargs):
|
||||
:return:
|
||||
"""
|
||||
|
||||
vars = kwargs.get('variables', None)
|
||||
tvar = kwargs.get('target_variable', None)
|
||||
l = len(vars)
|
||||
|
||||
il = len(individual['explanatory_variables'])
|
||||
rnd = random.uniform(0, 1)
|
||||
if rnd > .9 and il > 1:
|
||||
rnd = random.randint(0, il-1)
|
||||
val = individual['explanatory_variables'][rnd]
|
||||
individual['explanatory_variables'].remove(val)
|
||||
individual['explanatory_params'].pop(rnd)
|
||||
elif rnd < .1 and il < l:
|
||||
rnd = random.randint(0, l-1)
|
||||
while rnd in individual['explanatory_variables']:
|
||||
rnd = random.randint(0, l-1)
|
||||
individual['explanatory_variables'].append(rnd)
|
||||
individual['explanatory_params'].append(random_param(vars[rnd]))
|
||||
|
||||
for ct in np.arange(len(individual['explanatory_variables'])):
|
||||
rnd = random.uniform(0, 1)
|
||||
if rnd > .5:
|
||||
mutate_variable_params(individual['explanatory_params'][ct])
|
||||
mutate_variable_params(individual['explanatory_params'][ct], vars[ct])
|
||||
|
||||
rnd = random.uniform(0, 1)
|
||||
if rnd > .5:
|
||||
mutate_variable_params(individual['target_params'])
|
||||
mutate_variable_params(individual['target_params'], tvar)
|
||||
|
||||
individual['f1'] = None
|
||||
individual['f2'] = None
|
||||
@ -332,8 +357,9 @@ def mutation(individual, **kwargs):
|
||||
return individual
|
||||
|
||||
|
||||
def mutate_variable_params(param):
|
||||
param['npart'] = min(50, max(3, int(param['npart'] + np.random.normal(0, 4))))
|
||||
def mutate_variable_params(param, var):
|
||||
if var['type']=='common':
|
||||
param['npart'] = min(50, max(3, int(param['npart'] + np.random.normal(0, 4))))
|
||||
param['alpha'] = min(.5, max(0, param['alpha'] + np.random.normal(0, .5)))
|
||||
param['mf'] = random.randint(1, 4)
|
||||
param['partitioner'] = random.randint(1, 2)
|
||||
@ -428,7 +454,7 @@ def persist_statistics(datasetname, statistics):
|
||||
|
||||
def log_result(datasetname, fts_method, result):
|
||||
import json
|
||||
with open('result_{}{}.json'.format(fts_method,datasetname), 'w') as file:
|
||||
with open('result_{}{}.json'.format(fts_method,datasetname), 'a+') as file:
|
||||
file.write(json.dumps(result))
|
||||
|
||||
print(result)
|
||||
|
@ -156,9 +156,12 @@ class Partitioner(object):
|
||||
nearest = self.search(data, type='index')
|
||||
mv = np.zeros(self.partitions)
|
||||
|
||||
for ix in nearest:
|
||||
tmp = self[ix].membership(data)
|
||||
mv[ix] = tmp if tmp >= alpha_cut else 0.
|
||||
try:
|
||||
for ix in nearest:
|
||||
tmp = self[ix].membership(data)
|
||||
mv[ix] = tmp if tmp >= alpha_cut else 0.
|
||||
except:
|
||||
print(ix)
|
||||
|
||||
ix = np.ravel(np.argwhere(mv > 0.))
|
||||
|
||||
@ -316,19 +319,16 @@ class Partitioner(object):
|
||||
it represents the fuzzy set name.
|
||||
:return: the fuzzy set
|
||||
"""
|
||||
try:
|
||||
if isinstance(item, (int, np.int, np.int8, np.int16, np.int32, np.int64)):
|
||||
if item < 0 or item >= self.partitions:
|
||||
raise ValueError("The fuzzy set index must be between 0 and {}.".format(self.partitions))
|
||||
return self.sets[self.ordered_sets[item]]
|
||||
elif isinstance(item, str):
|
||||
if item not in self.sets:
|
||||
raise ValueError("The fuzzy set with name {} does not exist.".format(item))
|
||||
return self.sets[item]
|
||||
else:
|
||||
raise ValueError("The parameter 'item' must be an integer or a string and the value informed was {} of type {}!".format(item, type(item)))
|
||||
except Exception as ex:
|
||||
logging.exception("Error")
|
||||
if isinstance(item, (int, np.int, np.int8, np.int16, np.int32, np.int64)):
|
||||
if item < 0 or item >= self.partitions:
|
||||
raise ValueError("The fuzzy set index must be between 0 and {}.".format(self.partitions))
|
||||
return self.sets[self.ordered_sets[item]]
|
||||
elif isinstance(item, str):
|
||||
if item not in self.sets:
|
||||
raise ValueError("The fuzzy set with name {} does not exist.".format(item))
|
||||
return self.sets[item]
|
||||
else:
|
||||
raise ValueError("The parameter 'item' must be an integer or a string and the value informed was {} of type {}!".format(item, type(item)))
|
||||
|
||||
|
||||
def __iter__(self):
|
||||
|
@ -50,14 +50,14 @@ explanatory_variables =[
|
||||
{'name': 'Temperature', 'data_label': 'temperature', 'type': 'common'},
|
||||
{'name': 'Daily', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.minute_of_day, 'npart': 24 },
|
||||
{'name': 'Weekly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_week, 'npart': 7 },
|
||||
#{'name': 'Monthly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_month, 'npart': 4 },
|
||||
{'name': 'Monthly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_month, 'npart': 4 },
|
||||
{'name': 'Yearly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_year, 'npart': 12 }
|
||||
]
|
||||
|
||||
target_variable = {'name': 'Load', 'data_label': 'load', 'type': 'common'}
|
||||
nodes=['192.168.28.38']
|
||||
deho_mv.execute(datsetname, dataset,
|
||||
ngen=10, npop=10,psel=0.6, pcross=.5, pmut=.3,
|
||||
ngen=20, npop=15,psel=0.6, pcross=.5, pmut=.3,
|
||||
window_size=2000, train_rate=.9, increment_rate=1,
|
||||
experiments=1,
|
||||
fts_method=wmvfts.WeightedMVFTS,
|
||||
|
Loading…
Reference in New Issue
Block a user