Bugfixes in FTS.forecast_ahead
This commit is contained in:
parent
033dc2807a
commit
9e0a4e312f
@ -189,15 +189,19 @@ class FTS(object):
|
||||
:param kwargs: model specific parameters
|
||||
:return: a list with the forecasted values
|
||||
"""
|
||||
|
||||
if isinstance(data, np.ndarray):
|
||||
data = data.tolist()
|
||||
|
||||
ret = []
|
||||
for k in np.arange(0,steps):
|
||||
tmp = self.forecast(data[-self.order:], **kwargs)
|
||||
tmp = self.forecast(data[-self.max_lag:], **kwargs)
|
||||
|
||||
if isinstance(tmp,(list, np.ndarray)):
|
||||
tmp = tmp[0]
|
||||
tmp = tmp[-1]
|
||||
|
||||
ret.append(tmp)
|
||||
data.append_rhs(tmp)
|
||||
data.append(tmp)
|
||||
|
||||
return ret
|
||||
|
||||
|
@ -12,7 +12,7 @@ import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_data(field='avg'):
|
||||
def get_data(field='AVG'):
|
||||
"""
|
||||
Get the univariate time series data.
|
||||
|
||||
|
@ -12,7 +12,7 @@ import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_data(field='avg'):
|
||||
def get_data(field='AVG'):
|
||||
"""
|
||||
Get the univariate time series data.
|
||||
|
||||
|
@ -12,7 +12,7 @@ import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_data(field='avg'):
|
||||
def get_data(field='AVG'):
|
||||
"""
|
||||
Get the univariate time series data.
|
||||
|
||||
|
@ -117,7 +117,7 @@ class HighOrderFTS(fts.FTS):
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
if l <= self.max_lag:
|
||||
if l < self.max_lag:
|
||||
return ndata
|
||||
|
||||
for k in np.arange(self.max_lag, l+1):
|
||||
|
@ -19,7 +19,7 @@ dataset = TAIEX.get_data()
|
||||
#print(len(dataset))
|
||||
|
||||
from pyFTS.partitioners import Grid, Util as pUtil
|
||||
partitioner = Grid.GridPartitioner(data=dataset[:800], npart=10, transformation=tdiff)
|
||||
partitioner = Grid.GridPartitioner(data=dataset[:2000], npart=20) #, transformation=tdiff)
|
||||
|
||||
|
||||
from pyFTS.common import Util as cUtil
|
||||
@ -28,15 +28,23 @@ from pyFTS.benchmarks import benchmarks as bchmk, Util as bUtil, Measures, knn,
|
||||
from pyFTS.models import pwfts, song, chen, ifts, hofts
|
||||
from pyFTS.models.ensemble import ensemble
|
||||
|
||||
model = chen.ConventionalFTS(partitioner=partitioner)
|
||||
#model = hofts.HighOrderFTS(partitioner=partitioner,order=2)
|
||||
model.append_transformation(tdiff)
|
||||
model.fit(dataset[:800])
|
||||
print(partitioner)
|
||||
|
||||
cUtil.plot_rules(model, size=[20,20], rules_by_axis=5, columns=1)
|
||||
#model = chen.ConventionalFTS(partitioner=partitioner)
|
||||
model = hofts.HighOrderFTS(partitioner=partitioner,order=2)
|
||||
#model.append_transformation(tdiff)
|
||||
model.fit(dataset[:2000])
|
||||
|
||||
print(model)
|
||||
|
||||
print(model.predict([3500, 7000], steps_ahead=5))
|
||||
|
||||
|
||||
|
||||
#cUtil.plot_rules(model, size=[20,20], rules_by_axis=5, columns=1)
|
||||
|
||||
#
|
||||
|
||||
print("fim")
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user