Padronização dos nomes das funções
This commit is contained in:
parent
3c2b452bbb
commit
9ad5af49a4
4
chen.py
4
chen.py
@ -22,7 +22,7 @@ class ConventionalFTS(fts.FTS):
|
|||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(ConventionalFTS, self).__init__(1,name)
|
super(ConventionalFTS, self).__init__(1,name)
|
||||||
|
|
||||||
def defuzzy(self,data):
|
def forecast(self,data):
|
||||||
|
|
||||||
actual = self.fuzzy(data)
|
actual = self.fuzzy(data)
|
||||||
|
|
||||||
@ -40,7 +40,7 @@ class ConventionalFTS(fts.FTS):
|
|||||||
|
|
||||||
return denom/count
|
return denom/count
|
||||||
|
|
||||||
def learn(self, data, sets):
|
def train(self, data, sets):
|
||||||
last = {"fuzzyset":"", "membership":0.0}
|
last = {"fuzzyset":"", "membership":0.0}
|
||||||
actual = {"fuzzyset":"", "membership":0.0}
|
actual = {"fuzzyset":"", "membership":0.0}
|
||||||
|
|
||||||
|
8
fts.py
8
fts.py
@ -18,17 +18,17 @@ class FTS:
|
|||||||
|
|
||||||
return best
|
return best
|
||||||
|
|
||||||
def defuzzy(self,data):
|
def forecast(self,data):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def learn(self, data, sets):
|
def train(self, data, sets):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def predict(self,data):
|
def predict(self,data):
|
||||||
return self.defuzzy(data)
|
return self.forecast(data)
|
||||||
|
|
||||||
def predictDiff(self,data,t):
|
def predictDiff(self,data,t):
|
||||||
return data[t] + self.defuzzy(data[t-1]-data[t])
|
return data[t] + self.forecast(data[t-1]-data[t])
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
tmp = self.name + ":\n"
|
tmp = self.name + ":\n"
|
||||||
|
8
hwang.py
8
hwang.py
@ -5,7 +5,7 @@ class HighOrderFTS(fts.FTS):
|
|||||||
def __init__(self,order,name):
|
def __init__(self,order,name):
|
||||||
super(HighOrderFTS, self).__init__(order,name)
|
super(HighOrderFTS, self).__init__(order,name)
|
||||||
|
|
||||||
def defuzzy(self,data,t):
|
def forecast(self,data,t):
|
||||||
cn = np.array([0.0 for k in range(len(self.sets))])
|
cn = np.array([0.0 for k in range(len(self.sets))])
|
||||||
ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order-1)])
|
ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order-1)])
|
||||||
rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order-1)])
|
rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order-1)])
|
||||||
@ -27,11 +27,11 @@ class HighOrderFTS(fts.FTS):
|
|||||||
return out / count
|
return out / count
|
||||||
|
|
||||||
|
|
||||||
def learn(self, data, sets):
|
def train(self, data, sets):
|
||||||
self.sets = sets
|
self.sets = sets
|
||||||
|
|
||||||
def predict(self,data,t):
|
def predict(self,data,t):
|
||||||
return self.defuzzy(data,t)
|
return self.forecast(data,t)
|
||||||
|
|
||||||
def predictDiff(self,data,t):
|
def predictDiff(self,data,t):
|
||||||
return data[t] + self.defuzzy(common.differential(data),t)
|
return data[t] + self.forecast(common.differential(data),t)
|
||||||
|
@ -31,7 +31,7 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(ImprovedWeightedFTS, self).__init__(1,name)
|
super(ImprovedWeightedFTS, self).__init__(1,name)
|
||||||
|
|
||||||
def defuzzy(self,data):
|
def forecast(self,data):
|
||||||
actual = self.fuzzy(data)
|
actual = self.fuzzy(data)
|
||||||
if actual["fuzzyset"] not in self.flrgs:
|
if actual["fuzzyset"] not in self.flrgs:
|
||||||
return self.sets[actual["fuzzyset"]].centroid
|
return self.sets[actual["fuzzyset"]].centroid
|
||||||
@ -39,7 +39,7 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
mi = np.array([self.sets[s].centroid for s in flrg.RHS.keys()])
|
mi = np.array([self.sets[s].centroid for s in flrg.RHS.keys()])
|
||||||
return mi.dot( flrg.weights() )
|
return mi.dot( flrg.weights() )
|
||||||
|
|
||||||
def learn(self, data, sets):
|
def train(self, data, sets):
|
||||||
last = {"fuzzyset":"", "membership":0.0}
|
last = {"fuzzyset":"", "membership":0.0}
|
||||||
actual = {"fuzzyset":"", "membership":0.0}
|
actual = {"fuzzyset":"", "membership":0.0}
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@ class ExponentialyWeightedFTS(fts.FTS):
|
|||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(ExponentialyWeightedFTS, self).__init__(1,name)
|
super(ExponentialyWeightedFTS, self).__init__(1,name)
|
||||||
|
|
||||||
def defuzzy(self,data):
|
def forecast(self,data):
|
||||||
|
|
||||||
actual = self.fuzzy(data)
|
actual = self.fuzzy(data)
|
||||||
|
|
||||||
@ -47,7 +47,7 @@ class ExponentialyWeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
return mi.dot( flrg.weights() )
|
return mi.dot( flrg.weights() )
|
||||||
|
|
||||||
def learn(self, data, sets):
|
def train(self, data, sets):
|
||||||
last = {"fuzzyset":"", "membership":0.0}
|
last = {"fuzzyset":"", "membership":0.0}
|
||||||
actual = {"fuzzyset":"", "membership":0.0}
|
actual = {"fuzzyset":"", "membership":0.0}
|
||||||
|
|
||||||
|
8
sfts.py
8
sfts.py
@ -21,9 +21,9 @@ class SeasonalFLRG(fts.FTS):
|
|||||||
|
|
||||||
class SeasonalFTS(fts.FTS):
|
class SeasonalFTS(fts.FTS):
|
||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(WeightedFTS, self).__init__(1,name)
|
super(SeasonalFTS, self).__init__(1,name)
|
||||||
|
|
||||||
def defuzzy(self,data):
|
def forecast(self,data):
|
||||||
|
|
||||||
actual = self.fuzzy(data)
|
actual = self.fuzzy(data)
|
||||||
|
|
||||||
@ -36,7 +36,7 @@ class SeasonalFTS(fts.FTS):
|
|||||||
|
|
||||||
return mi.dot( flrg.weights() )
|
return mi.dot( flrg.weights() )
|
||||||
|
|
||||||
def learn(self, data, sets):
|
def train(self, data, sets):
|
||||||
last = {"fuzzyset":"", "membership":0.0}
|
last = {"fuzzyset":"", "membership":0.0}
|
||||||
actual = {"fuzzyset":"", "membership":0.0}
|
actual = {"fuzzyset":"", "membership":0.0}
|
||||||
|
|
||||||
@ -50,7 +50,7 @@ class SeasonalFTS(fts.FTS):
|
|||||||
|
|
||||||
if count > self.order:
|
if count > self.order:
|
||||||
if last["fuzzyset"] not in self.flrgs:
|
if last["fuzzyset"] not in self.flrgs:
|
||||||
self.flrgs[last["fuzzyset"]] = WeightedFLRG(last["fuzzyset"])
|
self.flrgs[last["fuzzyset"]] = SeasonalFLRG(last["fuzzyset"])
|
||||||
|
|
||||||
self.flrgs[last["fuzzyset"]].append(actual["fuzzyset"])
|
self.flrgs[last["fuzzyset"]].append(actual["fuzzyset"])
|
||||||
count = count + 1
|
count = count + 1
|
||||||
|
4
yu.py
4
yu.py
@ -32,7 +32,7 @@ class WeightedFTS(fts.FTS):
|
|||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(WeightedFTS, self).__init__(1,name)
|
super(WeightedFTS, self).__init__(1,name)
|
||||||
|
|
||||||
def defuzzy(self,data):
|
def forecast(self,data):
|
||||||
|
|
||||||
actual = self.fuzzy(data)
|
actual = self.fuzzy(data)
|
||||||
|
|
||||||
@ -45,7 +45,7 @@ class WeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
return mi.dot( flrg.weights() )
|
return mi.dot( flrg.weights() )
|
||||||
|
|
||||||
def learn(self, data, sets):
|
def train(self, data, sets):
|
||||||
last = {"fuzzyset":"", "membership":0.0}
|
last = {"fuzzyset":"", "membership":0.0}
|
||||||
actual = {"fuzzyset":"", "membership":0.0}
|
actual = {"fuzzyset":"", "membership":0.0}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user