- Distributed sliding window benchmarks with dispy
This commit is contained in:
parent
fa676f9f1d
commit
97246f1510
@ -145,3 +145,35 @@ def crps(targets, densities):
|
||||
_crps += sum([ (Ff[col][k]-Fa[col][k])**2 for col in densities.columns])
|
||||
|
||||
return _crps / float(l * n)
|
||||
|
||||
|
||||
def get_point_statistics(data, model, indexer=None):
|
||||
if indexer is not None:
|
||||
ndata = np.array(indexer.get_data(data[model.order:]))
|
||||
else:
|
||||
ndata = np.array(data[model.order:])
|
||||
|
||||
if model.isMultivariate or indexer is None:
|
||||
forecasts = model.forecast(data)
|
||||
elif not model.isMultivariate and indexer is not None:
|
||||
forecasts = model.forecast(indexer.get_data(data))
|
||||
|
||||
if model.hasSeasonality:
|
||||
nforecasts = np.array(forecasts)
|
||||
else:
|
||||
nforecasts = np.array(forecasts[:-1])
|
||||
ret = list()
|
||||
try:
|
||||
ret.append(np.round(rmse(ndata, nforecasts), 2))
|
||||
except:
|
||||
ret.append(np.nan)
|
||||
try:
|
||||
ret.append(np.round(smape(ndata, nforecasts), 2))
|
||||
except:
|
||||
ret.append(np.nan)
|
||||
try:
|
||||
ret.append(np.round(UStatistic(ndata, nforecasts), 2))
|
||||
except:
|
||||
ret.append(np.nan)
|
||||
|
||||
return ret
|
62
benchmarks/Util.py
Normal file
62
benchmarks/Util.py
Normal file
@ -0,0 +1,62 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from copy import deepcopy
|
||||
from pyFTS.common import Util
|
||||
|
||||
|
||||
def save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u):
|
||||
ret = []
|
||||
|
||||
if sintetic:
|
||||
|
||||
for k in sorted(objs.keys()):
|
||||
try:
|
||||
mod = []
|
||||
mfts = objs[k]
|
||||
mod.append(mfts.shortname)
|
||||
mod.append(mfts.order)
|
||||
mod.append(mfts.partitioner.name)
|
||||
mod.append(mfts.partitioner.partitions)
|
||||
mod.append(len(mfts))
|
||||
mod.append(np.round(np.nanmean(rmse[k]), 2))
|
||||
mod.append(np.round(np.nanstd(rmse[k]), 2))
|
||||
mod.append(np.round(np.nanmean(smape[k]), 2))
|
||||
mod.append(np.round(np.nanstd(smape[k]), 2))
|
||||
mod.append(np.round(np.nanmean(u[k]), 2))
|
||||
mod.append(np.round(np.nanstd(u[k]), 2))
|
||||
mod.append(np.round(np.nanmean(times[k]), 4))
|
||||
ret.append(mod)
|
||||
except Exception as ex:
|
||||
print("Erro ao salvar ", k)
|
||||
print("Exceção ", ex)
|
||||
|
||||
columns = ["Model", "Order", "Scheme","Partitions", "Size", "RMSEAVG", "RMSESTD", "SMAPEAVG", "SMAPESTD", "UAVG", "USTD", "TIMEAVG"]
|
||||
else:
|
||||
for k in sorted(objs.keys()):
|
||||
try:
|
||||
mfts = objs[k]
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'RMSE']
|
||||
tmp.extend(rmse[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'SMAPE']
|
||||
tmp.extend(smape[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'U']
|
||||
tmp.extend(u[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'TIME']
|
||||
tmp.extend(times[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
except Exception as ex:
|
||||
print("Erro ao salvar ", k)
|
||||
print("Exceção ", ex)
|
||||
columns = [str(k) for k in np.arange(0, experiments)]
|
||||
columns.insert(0, "Model")
|
||||
columns.insert(1, "Order")
|
||||
columns.insert(2, "Scheme")
|
||||
columns.insert(3, "Partitions")
|
||||
columns.insert(4, "Size")
|
||||
columns.insert(5, "Measure")
|
||||
dat = pd.DataFrame(ret, columns=columns)
|
||||
if save: dat.to_csv(Util.uniquefilename(file), sep=";")
|
||||
return dat
|
@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
# from sklearn.cross_validation import KFold
|
||||
from pyFTS.partitioners import partitioner, Grid, Huarng, Entropy, FCM
|
||||
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, ProbabilityDistribution
|
||||
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, ProbabilityDistribution, Util
|
||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||
from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pwfts, ifts
|
||||
from copy import deepcopy
|
||||
@ -37,64 +37,6 @@ def get_interval_methods():
|
||||
return [ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS]
|
||||
|
||||
|
||||
def save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u):
|
||||
ret = []
|
||||
|
||||
if sintetic:
|
||||
|
||||
for k in sorted(objs.keys()):
|
||||
try:
|
||||
mod = []
|
||||
mfts = objs[k]
|
||||
mod.append(mfts.shortname)
|
||||
mod.append(mfts.order)
|
||||
mod.append(mfts.partitioner.name)
|
||||
mod.append(mfts.partitioner.partitions)
|
||||
mod.append(len(mfts))
|
||||
mod.append(np.round(np.nanmean(rmse[k]), 2))
|
||||
mod.append(np.round(np.nanstd(rmse[k]), 2))
|
||||
mod.append(np.round(np.nanmean(smape[k]), 2))
|
||||
mod.append(np.round(np.nanstd(smape[k]), 2))
|
||||
mod.append(np.round(np.nanmean(u[k]), 2))
|
||||
mod.append(np.round(np.nanstd(u[k]), 2))
|
||||
mod.append(np.round(np.nanmean(times[k]), 4))
|
||||
ret.append(mod)
|
||||
except Exception as ex:
|
||||
print("Erro ao salvar ", k)
|
||||
print("Exceção ", ex)
|
||||
|
||||
columns = ["Model", "Order", "Scheme","Partitions", "Size", "RMSEAVG", "RMSESTD", "SMAPEAVG", "SMAPESTD", "UAVG", "USTD", "TIMEAVG"]
|
||||
else:
|
||||
for k in sorted(objs.keys()):
|
||||
try:
|
||||
mfts = objs[k]
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'RMSE']
|
||||
tmp.extend(rmse[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'SMAPE']
|
||||
tmp.extend(smape[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'U']
|
||||
tmp.extend(u[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'TIME']
|
||||
tmp.extend(times[k])
|
||||
ret.append(deepcopy(tmp))
|
||||
except Exception as ex:
|
||||
print("Erro ao salvar ", k)
|
||||
print("Exceção ", ex)
|
||||
columns = [str(k) for k in np.arange(0, experiments)]
|
||||
columns.insert(0, "Model")
|
||||
columns.insert(1, "Order")
|
||||
columns.insert(2, "Scheme")
|
||||
columns.insert(3, "Partitions")
|
||||
columns.insert(4, "Size")
|
||||
columns.insert(5, "Measure")
|
||||
dat = pd.DataFrame(ret, columns=columns)
|
||||
if save: dat.to_csv(Util.uniquefilename(file), sep=";")
|
||||
return dat
|
||||
|
||||
|
||||
def external_point_sliding_window(models, parameters, data, windowsize,train=0.8, dump=False, save=False, file=None, sintetic=True):
|
||||
objs = {}
|
||||
lcolors = {}
|
||||
@ -129,7 +71,7 @@ def external_point_sliding_window(models, parameters, data, windowsize,train=0.8
|
||||
|
||||
try:
|
||||
_start = time.time()
|
||||
_rmse, _smape, _u = get_point_statistics(test, model, None)
|
||||
_rmse, _smape, _u = Measures.get_point_statistics(test, model, None)
|
||||
_end = time.time()
|
||||
rmse[_key].append(_rmse)
|
||||
smape[_key].append(_smape)
|
||||
@ -143,7 +85,7 @@ def external_point_sliding_window(models, parameters, data, windowsize,train=0.8
|
||||
u[_key].append(np.nan)
|
||||
times[_key].append(np.nan)
|
||||
|
||||
return save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u)
|
||||
return Util.save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u)
|
||||
|
||||
|
||||
def point_sliding_window(data, windowsize, train=0.8,models=None,partitioners=[Grid.GridPartitioner],
|
||||
@ -240,7 +182,7 @@ def point_sliding_window(data, windowsize, train=0.8,models=None,partitioners=[G
|
||||
times[_key].append(_end - _start)
|
||||
|
||||
_start = time.time()
|
||||
_rmse, _smape, _u = get_point_statistics(test, mfts, indexer)
|
||||
_rmse, _smape, _u = Measures.get_point_statistics(test, mfts, indexer)
|
||||
_end = time.time()
|
||||
rmse[_key].append(_rmse)
|
||||
smape[_key].append(_smape)
|
||||
@ -262,7 +204,7 @@ def point_sliding_window(data, windowsize, train=0.8,models=None,partitioners=[G
|
||||
|
||||
print("Process Duration: {0}".format(_process_end - _process_start))
|
||||
|
||||
return save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u)
|
||||
return Util.save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u)
|
||||
|
||||
|
||||
def all_point_forecasters(data_train, data_test, partitions, max_order=3, statistics=True, residuals=True,
|
||||
@ -326,38 +268,6 @@ def all_point_forecasters(data_train, data_test, partitions, max_order=3, statis
|
||||
plot_probability_distributions(pmfs, lcolors, tam=tam)
|
||||
|
||||
|
||||
def get_point_statistics(data, model, indexer=None):
|
||||
if indexer is not None:
|
||||
ndata = np.array(indexer.get_data(data[model.order:]))
|
||||
else:
|
||||
ndata = np.array(data[model.order:])
|
||||
|
||||
if model.isMultivariate or indexer is None:
|
||||
forecasts = model.forecast(data)
|
||||
elif not model.isMultivariate and indexer is not None:
|
||||
forecasts = model.forecast(indexer.get_data(data))
|
||||
|
||||
if model.hasSeasonality:
|
||||
nforecasts = np.array(forecasts)
|
||||
else:
|
||||
nforecasts = np.array(forecasts[:-1])
|
||||
ret = list()
|
||||
try:
|
||||
ret.append(np.round(Measures.rmse(ndata, nforecasts), 2))
|
||||
except:
|
||||
ret.append(np.nan)
|
||||
try:
|
||||
ret.append(np.round(Measures.smape(ndata, nforecasts), 2))
|
||||
except:
|
||||
ret.append(np.nan)
|
||||
try:
|
||||
ret.append(np.round(Measures.UStatistic(ndata, nforecasts), 2))
|
||||
except:
|
||||
ret.append(np.nan)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def print_point_statistics(data, models, externalmodels = None, externalforecasts = None, indexers=None):
|
||||
ret = "Model & Order & RMSE & SMAPE & Theil's U \\\\ \n"
|
||||
for count,model in enumerate(models,start=0):
|
||||
|
179
benchmarks/distributed_benchmarks.py
Normal file
179
benchmarks/distributed_benchmarks.py
Normal file
@ -0,0 +1,179 @@
|
||||
import random
|
||||
import dispy
|
||||
import dispy.httpd
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import time
|
||||
import datetime
|
||||
import pyFTS
|
||||
from pyFTS.partitioners import partitioner, Grid, Huarng, Entropy, FCM
|
||||
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, ProbabilityDistribution
|
||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||
from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pwfts, ifts
|
||||
from pyFTS.benchmarks import benchmarks, parallel_benchmarks, Util as bUtil
|
||||
|
||||
|
||||
def run_point(mfts, partitioner, train_data, test_data, window_key=None, transformation=None, indexer=None):
|
||||
import time
|
||||
from pyFTS import yu,chen,hofts,ifts,pwfts,ismailefendi,sadaei
|
||||
from pyFTS.partitioners import Grid, Entropy, FCM
|
||||
from pyFTS.benchmarks import Measures
|
||||
|
||||
tmp = [yu.WeightedFTS, chen.ConventionalFTS, hofts.HighOrderFTS, ifts.IntervalFTS,
|
||||
pwfts.ProbabilisticWeightedFTS, ismailefendi.ImprovedWeightedFTS, sadaei.ExponentialyWeightedFTS]
|
||||
|
||||
tmp2 = [Grid.GridPartitioner, Entropy.EntropyPartitioner, FCM.FCMPartitioner]
|
||||
|
||||
tmp3 = [Measures.get_point_statistics]
|
||||
|
||||
pttr = str(partitioner.__module__).split('.')[-1]
|
||||
_key = mfts.shortname + " n = " + str(mfts.order) + " " + pttr + " q = " + str(partitioner.partitions)
|
||||
mfts.partitioner = partitioner
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
# try:
|
||||
_start = time.time()
|
||||
mfts.train(train_data, partitioner.sets, order=mfts.order)
|
||||
_end = time.time()
|
||||
times = _end - _start
|
||||
|
||||
_start = time.time()
|
||||
_rmse, _smape, _u = Measures.get_point_statistics(test_data, mfts, indexer)
|
||||
_end = time.time()
|
||||
times += _end - _start
|
||||
# except Exception as e:
|
||||
# print(e)
|
||||
# _rmse = np.nan
|
||||
# _smape = np.nan
|
||||
# _u = np.nan
|
||||
# times = np.nan
|
||||
|
||||
ret = {'key': _key, 'obj': mfts, 'rmse': _rmse, 'smape': _smape, 'u': _u, 'time': times, 'window': window_key}
|
||||
|
||||
# print(ret)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def point_sliding_window(data, windowsize, train=0.8, models=None, partitioners=[Grid.GridPartitioner],
|
||||
partitions=[10], max_order=3, transformation=None, indexer=None, dump=False,
|
||||
save=False, file=None, sintetic=False,nodes=None, depends=None):
|
||||
|
||||
# dependencies = [fts, Membership, benchmarks]
|
||||
# if depends is not None: dependencies.extend(depends)
|
||||
|
||||
# if models is not None:
|
||||
# dependencies.extend(models)
|
||||
# else:
|
||||
# dependencies.extend(benchmarks.get_point_methods())
|
||||
|
||||
# dependencies.extend(partitioners)
|
||||
# if transformation is not None: dependencies.extend(transformation)
|
||||
# if indexer is not None: dependencies.extend(indexer)
|
||||
|
||||
cluster = dispy.JobCluster(run_point, nodes=nodes) #, depends=dependencies)
|
||||
|
||||
# import dispy's httpd module, create http server for this cluster
|
||||
|
||||
http_server = dispy.httpd.DispyHTTPServer(cluster)
|
||||
|
||||
_process_start = time.time()
|
||||
|
||||
print("Process Start: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
||||
|
||||
pool = []
|
||||
jobs = []
|
||||
objs = {}
|
||||
rmse = {}
|
||||
smape = {}
|
||||
u = {}
|
||||
times = {}
|
||||
|
||||
if models is None:
|
||||
models = benchmarks.get_point_methods()
|
||||
|
||||
for model in models:
|
||||
mfts = model("")
|
||||
|
||||
if mfts.isHighOrder:
|
||||
for order in np.arange(1, max_order + 1):
|
||||
if order >= mfts.minOrder:
|
||||
mfts = model("")
|
||||
mfts.order = order
|
||||
pool.append(mfts)
|
||||
else:
|
||||
pool.append(mfts)
|
||||
|
||||
experiments = 0
|
||||
for ct, train, test in Util.sliding_window(data, windowsize, train):
|
||||
experiments += 1
|
||||
|
||||
if dump: print('\nWindow: {0}\n'.format(ct))
|
||||
|
||||
for partition in partitions:
|
||||
|
||||
for partitioner in partitioners:
|
||||
|
||||
data_train_fs = partitioner(train, partition, transformation=transformation)
|
||||
|
||||
for id, m in enumerate(pool,start=0):
|
||||
job = cluster.submit(m, data_train_fs, train, test, ct, transformation)
|
||||
job.id = id # associate an ID to identify jobs (if needed later)
|
||||
jobs.append(job)
|
||||
|
||||
for job in jobs:
|
||||
tmp = job()
|
||||
if job.status == dispy.DispyJob.Finished and tmp is not None:
|
||||
if tmp['key'] not in objs:
|
||||
objs[tmp['key']] = tmp['obj']
|
||||
rmse[tmp['key']] = []
|
||||
smape[tmp['key']] = []
|
||||
u[tmp['key']] = []
|
||||
times[tmp['key']] = []
|
||||
rmse[tmp['key']].append(tmp['rmse'])
|
||||
smape[tmp['key']].append(tmp['smape'])
|
||||
u[tmp['key']].append(tmp['u'])
|
||||
times[tmp['key']].append(tmp['time'])
|
||||
print(tmp['key'], tmp['window'])
|
||||
else:
|
||||
print(job.exception)
|
||||
print(job.stdout)
|
||||
|
||||
_process_end = time.time()
|
||||
|
||||
print("Process End: {0: %H:%M:%S}".format(datetime.datetime.now()))
|
||||
|
||||
print("Process Duration: {0}".format(_process_end - _process_start))
|
||||
|
||||
cluster.wait() # wait for all jobs to finish
|
||||
|
||||
cluster.print_status()
|
||||
|
||||
http_server.shutdown() # this waits until browser gets all updates
|
||||
cluster.close()
|
||||
|
||||
return bUtil.save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u)
|
||||
|
||||
|
||||
def compute(data):
|
||||
import socket
|
||||
return (socket.gethostname(), data)
|
||||
|
||||
|
||||
def teste(data,nodes):
|
||||
cluster = dispy.JobCluster(compute, nodes=nodes)
|
||||
jobs = []
|
||||
for ct, train, test in Util.sliding_window(data, 2000, 0.8):
|
||||
job = cluster.submit(ct)
|
||||
jobs.append(job)
|
||||
|
||||
for job in jobs:
|
||||
x = job()
|
||||
print(x)
|
||||
|
||||
cluster.wait()
|
||||
cluster.close()
|
||||
|
||||
|
@ -6,12 +6,6 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import time
|
||||
import datetime
|
||||
import matplotlib as plt
|
||||
import matplotlib.colors as pltcolors
|
||||
import matplotlib.cm as cmx
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
# from sklearn.cross_validation import KFold
|
||||
from pyFTS.partitioners import partitioner, Grid, Huarng, Entropy, FCM
|
||||
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, ProbabilityDistribution
|
||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||
|
2
fts.py
2
fts.py
@ -2,8 +2,6 @@ import numpy as np
|
||||
import pandas as pd
|
||||
from pyFTS import tree
|
||||
from pyFTS.common import FuzzySet, SortedCollection
|
||||
from pyFTS.benchmarks import Measures
|
||||
|
||||
|
||||
class FTS(object):
|
||||
def __init__(self, order, name):
|
||||
|
@ -44,3 +44,6 @@ class Partitioner(object):
|
||||
tmpx = [kk for kk in np.arange(s.lower, s.upper)]
|
||||
tmpy = [s.membership(kk) for kk in np.arange(s.lower, s.upper)]
|
||||
ax.plot(tmpx, tmpy)
|
||||
|
||||
def __str__(self):
|
||||
return self.name
|
@ -28,13 +28,20 @@ os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
||||
taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||
taiex = np.array(taiexpd["avg"][:5000])
|
||||
|
||||
from pyFTS.benchmarks import parallel_benchmarks as bchmk
|
||||
from pyFTS.benchmarks import distributed_benchmarks as bchmk
|
||||
#from pyFTS.benchmarks import parallel_benchmarks as bchmk
|
||||
#from pyFTS.benchmarks import benchmarks as bchmk
|
||||
from pyFTS import yu
|
||||
|
||||
bchmk.point_sliding_window(taiex,2000,train=0.8, #transformation=diff, #models=[pwfts.ProbabilisticWeightedFTS], # #
|
||||
#bchmk.teste(taiex,['192.168.0.109', '192.168.0.101'])
|
||||
|
||||
bchmk.point_sliding_window(taiex,2000,train=0.8, #models=[yu.WeightedFTS], # #
|
||||
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
|
||||
partitions= np.arange(10,200,step=5), #
|
||||
dump=False, save=True, file="experiments/nasdaq_point_parallel.csv")
|
||||
partitions= np.arange(10,200,step=5), #transformation=diff,
|
||||
dump=False, save=True, file="experiments/nasdaq_point_distributed.csv",
|
||||
nodes=['192.168.0.109', '192.168.0.101']) #, depends=[hofts, ifts])
|
||||
|
||||
#bchmk.testa(taiex,[10,20],partitioners=[Grid.GridPartitioner], nodes=['192.168.0.109', '192.168.0.101'])
|
||||
|
||||
#parallel_util.explore_partitioners(taiex,20)
|
||||
|
||||
@ -51,7 +58,7 @@ bchmk.point_sliding_window(taiex,2000,train=0.8, #transformation=diff, #models=[
|
||||
|
||||
#, ,
|
||||
|
||||
diff = Transformations.Differential(1)
|
||||
#diff = Transformations.Differential(1)
|
||||
|
||||
|
||||
#bchmk.external_point_sliding_window([naive.Naive, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA],
|
||||
|
Loading…
Reference in New Issue
Block a user