GridCluster e CMVFTS
This commit is contained in:
parent
f1994b2e2f
commit
91a9fa04ae
@ -162,7 +162,10 @@ class HighOrderFTS(fts.FTS):
|
|||||||
if explain:
|
if explain:
|
||||||
print("Fuzzyfication \n")
|
print("Fuzzyfication \n")
|
||||||
|
|
||||||
|
if not kwargs.get('fuzzyfied', False):
|
||||||
flrgs = self.generate_lhs_flrg(ndata[k - self.max_lag: k], explain)
|
flrgs = self.generate_lhs_flrg(ndata[k - self.max_lag: k], explain)
|
||||||
|
else:
|
||||||
|
flrgs = self.generate_lhs_flrg_fuzzyfied(ndata[k - self.max_lag: k], explain)
|
||||||
|
|
||||||
if explain:
|
if explain:
|
||||||
print("Rules:\n")
|
print("Rules:\n")
|
||||||
@ -172,7 +175,7 @@ class HighOrderFTS(fts.FTS):
|
|||||||
|
|
||||||
if flrg.get_key() not in self.flrgs:
|
if flrg.get_key() not in self.flrgs:
|
||||||
if len(flrg.LHS) > 0:
|
if len(flrg.LHS) > 0:
|
||||||
mp = self.sets[flrg.LHS[-1]].centroid
|
mp = self.partitioner.sets[flrg.LHS[-1]].centroid
|
||||||
tmp.append(mp)
|
tmp.append(mp)
|
||||||
|
|
||||||
if explain:
|
if explain:
|
||||||
@ -181,7 +184,7 @@ class HighOrderFTS(fts.FTS):
|
|||||||
|
|
||||||
else:
|
else:
|
||||||
flrg = self.flrgs[flrg.get_key()]
|
flrg = self.flrgs[flrg.get_key()]
|
||||||
mp = flrg.get_midpoint(self.sets)
|
mp = flrg.get_midpoint(self.partitioner.sets)
|
||||||
tmp.append(mp)
|
tmp.append(mp)
|
||||||
|
|
||||||
if explain:
|
if explain:
|
||||||
|
@ -32,6 +32,15 @@ class ClusteredMVFTS(mvfts.MVFTS):
|
|||||||
self.lags = kwargs.get("lags", None)
|
self.lags = kwargs.get("lags", None)
|
||||||
self.alpha_cut = kwargs.get('alpha_cut', 0.25)
|
self.alpha_cut = kwargs.get('alpha_cut', 0.25)
|
||||||
|
|
||||||
|
def fuzzyfy(self,data):
|
||||||
|
ndata = []
|
||||||
|
for ct in range(1, len(data.index)):
|
||||||
|
ix = data.index[ct - 1]
|
||||||
|
data_point = self.format_data(data.loc[ix])
|
||||||
|
ndata.append(common.fuzzyfy_instance_clustered(data_point, self.cluster, self.alpha_cut))
|
||||||
|
|
||||||
|
return ndata
|
||||||
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
|
|
||||||
@ -39,25 +48,30 @@ class ClusteredMVFTS(mvfts.MVFTS):
|
|||||||
|
|
||||||
self.model = self.fts_method(partitioner=self.cluster, **self.fts_params)
|
self.model = self.fts_method(partitioner=self.cluster, **self.fts_params)
|
||||||
if self.model.is_high_order:
|
if self.model.is_high_order:
|
||||||
self.model.order = self.model = self.fts_method(partitioner=self.partitioner,
|
self.model.order = self.model = self.fts_method(partitioner=self.cluster,
|
||||||
order=self.order, **self.fts_params)
|
order=self.order, **self.fts_params)
|
||||||
|
|
||||||
ndata = []
|
ndata = self.fuzzyfy(data)
|
||||||
for ct in range(1, len(data.index)):
|
|
||||||
ix = data.index[ct-1]
|
|
||||||
data_point = self.format_data(data.loc[ix])
|
|
||||||
ndata.append(common.fuzzyfy_instance_clustered(data_point, self.cluster, self.alpha_cut))
|
|
||||||
|
|
||||||
self.model.train(ndata, fuzzyfied=True)
|
self.model.train(ndata, fuzzyfied=True)
|
||||||
self.shortname = self.model.shortname
|
self.shortname = self.model.shortname
|
||||||
|
|
||||||
|
|
||||||
|
def forecast(self, ndata, **kwargs):
|
||||||
|
|
||||||
|
ndata = self.fuzzyfy(ndata)
|
||||||
|
|
||||||
|
return self.model.forecast(ndata, fuzzyfied=True, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
"""String representation of the model"""
|
"""String representation of the model"""
|
||||||
|
|
||||||
return str(self.model)
|
tmp = self.model.shortname + ":\n"
|
||||||
|
for r in self.model.flrgs:
|
||||||
|
tmp = tmp + str(self.model.flrgs[r]) + "\n"
|
||||||
|
return tmp
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
"""
|
"""
|
||||||
|
@ -2,17 +2,19 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.common import FuzzySet, Composite
|
from pyFTS.common import FuzzySet, Composite
|
||||||
|
|
||||||
|
|
||||||
class MultivariateFuzzySet(Composite.FuzzySet):
|
class MultivariateFuzzySet(Composite.FuzzySet):
|
||||||
"""
|
"""
|
||||||
Multivariate Composite Fuzzy Set
|
Multivariate Composite Fuzzy Set
|
||||||
"""
|
"""
|
||||||
def __init__(self, name):
|
def __init__(self, name, **kwargs):
|
||||||
"""
|
"""
|
||||||
Create an empty composite fuzzy set
|
Create an empty composite fuzzy set
|
||||||
:param name: fuzzy set name
|
:param name: fuzzy set name
|
||||||
"""
|
"""
|
||||||
super(MultivariateFuzzySet, self).__init__(name)
|
super(MultivariateFuzzySet, self).__init__(name)
|
||||||
self.sets = {}
|
self.sets = {}
|
||||||
|
self.target_variable = kwargs.get('target_variable',None)
|
||||||
|
|
||||||
def append_set(self, variable, set):
|
def append_set(self, variable, set):
|
||||||
"""
|
"""
|
||||||
@ -23,6 +25,9 @@ class MultivariateFuzzySet(Composite.FuzzySet):
|
|||||||
"""
|
"""
|
||||||
self.sets[variable] = set
|
self.sets[variable] = set
|
||||||
|
|
||||||
|
if variable == self.target_variable.name:
|
||||||
|
self.centroid = set.centroid
|
||||||
|
|
||||||
def membership(self, x):
|
def membership(self, x):
|
||||||
mv = []
|
mv = []
|
||||||
for var in self.sets.keys():
|
for var in self.sets.keys():
|
||||||
@ -36,9 +41,10 @@ def fuzzyfy_instance(data_point, var):
|
|||||||
fsets = FuzzySet.fuzzyfy(data_point, var.partitioner, mode='sets', method='fuzzy', alpha_cut=var.alpha_cut)
|
fsets = FuzzySet.fuzzyfy(data_point, var.partitioner, mode='sets', method='fuzzy', alpha_cut=var.alpha_cut)
|
||||||
return [(var.name, fs) for fs in fsets]
|
return [(var.name, fs) for fs in fsets]
|
||||||
|
|
||||||
|
|
||||||
def fuzzyfy_instance_clustered(data_point, cluster, alpha_cut=0.0):
|
def fuzzyfy_instance_clustered(data_point, cluster, alpha_cut=0.0):
|
||||||
fsets = []
|
fsets = []
|
||||||
for fset in cluster.sets:
|
for fset in cluster.knn(data_point):
|
||||||
if cluster.sets[fset].membership(data_point) > alpha_cut:
|
if cluster.sets[fset].membership(data_point) > alpha_cut:
|
||||||
fsets.append(fset)
|
fsets.append(fset)
|
||||||
return fsets
|
return fsets
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
from pyFTS.partitioners import partitioner
|
from pyFTS.partitioners import partitioner
|
||||||
from pyFTS.models.multivariate.common import MultivariateFuzzySet
|
from pyFTS.models.multivariate.common import MultivariateFuzzySet
|
||||||
from itertools import product
|
from itertools import product
|
||||||
|
from scipy.spatial import KDTree
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
class GridCluster(partitioner.Partitioner):
|
class GridCluster(partitioner.Partitioner):
|
||||||
"""
|
"""
|
||||||
@ -12,18 +15,42 @@ class GridCluster(partitioner.Partitioner):
|
|||||||
|
|
||||||
self.mvfts = kwargs.get('mvfts', None)
|
self.mvfts = kwargs.get('mvfts', None)
|
||||||
self.sets = {}
|
self.sets = {}
|
||||||
|
self.kdtree = None
|
||||||
|
self.index = {}
|
||||||
self.build(None)
|
self.build(None)
|
||||||
|
|
||||||
def build(self, data):
|
def build(self, data):
|
||||||
|
|
||||||
fsets = [[x for x in k.partitioner.sets.values()]
|
fsets = [[x for x in k.partitioner.sets.values()]
|
||||||
for k in self.mvfts.explanatory_variables]
|
for k in self.mvfts.explanatory_variables]
|
||||||
|
|
||||||
|
midpoints = []
|
||||||
|
index = {}
|
||||||
|
|
||||||
c = 0
|
c = 0
|
||||||
for k in product(*fsets):
|
for k in product(*fsets):
|
||||||
key = self.prefix+str(c)
|
#key = self.prefix+str(c)
|
||||||
mvfset = MultivariateFuzzySet(name=key)
|
mvfset = MultivariateFuzzySet(name="", target_variable=self.mvfts.target_variable)
|
||||||
c += 1
|
mp = []
|
||||||
|
_key = ""
|
||||||
for fset in k:
|
for fset in k:
|
||||||
mvfset.append_set(fset.variable, fset)
|
mvfset.append_set(fset.variable, fset)
|
||||||
self.sets[key] = mvfset
|
mp.append(fset.centroid)
|
||||||
|
_key += fset.name
|
||||||
|
mvfset.name = _key
|
||||||
|
self.sets[_key] = mvfset
|
||||||
|
midpoints.append(mp)
|
||||||
|
self.index[c] = _key
|
||||||
|
c += 1
|
||||||
|
|
||||||
|
self.kdtree = KDTree(midpoints)
|
||||||
|
|
||||||
|
def knn(self, data):
|
||||||
|
tmp = [data[k.name] for k in self.mvfts.explanatory_variables]
|
||||||
|
tmp, ix = self.kdtree.query(tmp,2)
|
||||||
|
|
||||||
|
if not isinstance(ix, (list, np.ndarray)):
|
||||||
|
ix = [ix]
|
||||||
|
|
||||||
|
return [self.index[k] for k in ix]
|
||||||
|
|
||||||
|
@ -3,6 +3,7 @@ import matplotlib.pylab as plt
|
|||||||
from pyFTS.data import TAIEX as tx
|
from pyFTS.data import TAIEX as tx
|
||||||
from pyFTS.common import Transformations
|
from pyFTS.common import Transformations
|
||||||
|
|
||||||
|
from pyFTS.benchmarks import Measures
|
||||||
from pyFTS.partitioners import Grid, Util as pUtil
|
from pyFTS.partitioners import Grid, Util as pUtil
|
||||||
from pyFTS.common import Transformations, Util
|
from pyFTS.common import Transformations, Util
|
||||||
from pyFTS.models.multivariate import common, variable, mvfts, wmvfts
|
from pyFTS.models.multivariate import common, variable, mvfts, wmvfts
|
||||||
@ -99,5 +100,7 @@ model1.append_variable(vprice)
|
|||||||
model1.target_variable = vprice
|
model1.target_variable = vprice
|
||||||
model1.fit(train_mv)
|
model1.fit(train_mv)
|
||||||
|
|
||||||
print(model1)
|
#print(model1)
|
||||||
|
|
||||||
|
print(Measures.get_point_statistics(test_mv, model1))
|
||||||
#"""
|
#"""
|
Loading…
Reference in New Issue
Block a user