- SeasonalIndexer on sfts
This commit is contained in:
parent
d1b18ef5c4
commit
8efd7c38d8
@ -438,6 +438,9 @@ def run_ahead(mfts, partitioner, train_data, test_data, steps, resolution, windo
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
if mfts.has_seasonality:
|
||||
mfts.indexer = indexer
|
||||
|
||||
try:
|
||||
_start = time.time()
|
||||
mfts.train(train_data, partitioner.sets, order=mfts.order)
|
||||
@ -553,7 +556,7 @@ def ahead_sliding_window(data, windowsize, steps, resolution, train=0.8, inc=0.1
|
||||
continue
|
||||
else:
|
||||
benchmarks_only[m.shortname] = m
|
||||
job = cluster.submit(m, data_train_fs, train, test, steps, resolution, ct, transformation)
|
||||
job = cluster.submit(m, data_train_fs, train, test, steps, resolution, ct, transformation, indexer)
|
||||
job.id = id # associate an ID to identify jobs (if needed later)
|
||||
jobs.append(job)
|
||||
|
||||
|
1
fts.py
1
fts.py
@ -36,6 +36,7 @@ class FTS(object):
|
||||
self.partitioner = None
|
||||
self.auto_update = False
|
||||
self.benchmark_only = False
|
||||
self.indexer = None
|
||||
|
||||
def fuzzy(self, data):
|
||||
"""
|
||||
|
@ -30,19 +30,22 @@ class LinearSeasonalIndexer(SeasonalIndexer):
|
||||
self.seasons = seasons
|
||||
|
||||
def get_season_of_data(self,data):
|
||||
return self.get_season_by_index(np.arange(0,len(data)))
|
||||
return self.get_season_by_index(np.arange(0, len(data)).tolist())
|
||||
|
||||
def get_season_by_index(self,index):
|
||||
ret = []
|
||||
if not isinstance(index, (list, np.ndarray)):
|
||||
season = (index % self.seasons[0]) + 1
|
||||
else:
|
||||
for ix in index:
|
||||
if self.num_seasons == 1:
|
||||
season = ix % self.seasons
|
||||
season = (ix % self.seasons[0])
|
||||
else:
|
||||
season = []
|
||||
for seasonality in self.seasons:
|
||||
print("S ", seasonality)
|
||||
#print("S ", seasonality)
|
||||
tmp = ix // seasonality
|
||||
print("T ", tmp)
|
||||
#print("T ", tmp)
|
||||
season.append(tmp)
|
||||
#season.append(rest)
|
||||
|
||||
|
29
sfts.py
29
sfts.py
@ -46,28 +46,24 @@ class SeasonalFTS(fts.FTS):
|
||||
self.is_high_order = False
|
||||
|
||||
def generateFLRG(self, flrs):
|
||||
flrgs = []
|
||||
season = 1
|
||||
for flr in flrs:
|
||||
flrgs = {}
|
||||
for ct, flr in enumerate(flrs, start=1):
|
||||
|
||||
if len(flrgs) < self.seasonality:
|
||||
flrgs.append(SeasonalFLRG(season))
|
||||
season = self.indexer.get_season_by_index(ct)[0]
|
||||
|
||||
if season not in flrgs:
|
||||
flrgs[season] = SeasonalFLRG(season)
|
||||
|
||||
#print(season)
|
||||
flrgs[season-1].append(flr.RHS)
|
||||
|
||||
season = (season + 1) % (self.seasonality + 1)
|
||||
|
||||
if season == 0: season = 1
|
||||
flrgs[season].append(flr.RHS)
|
||||
|
||||
return (flrgs)
|
||||
|
||||
def train(self, data, sets, order=1,parameters=12):
|
||||
def train(self, data, sets, order=1, parameters=None):
|
||||
self.sets = sets
|
||||
self.seasonality = parameters
|
||||
ndata = self.doTransformations(data)
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
||||
flrs = FLR.generateNonRecurrentFLRs(tmpdata)
|
||||
self.flrgs = self.generateFLRG(flrs)
|
||||
|
||||
def forecast(self, data, **kwargs):
|
||||
@ -79,13 +75,10 @@ class SeasonalFTS(fts.FTS):
|
||||
ret = []
|
||||
|
||||
for k in np.arange(1, l):
|
||||
#flrg = self.flrgs[ndata[k]]
|
||||
|
||||
season = (k + 1) % (self.seasonality + 1)
|
||||
season = self.indexer.get_season_by_index(k)[0]
|
||||
|
||||
#print(season)
|
||||
|
||||
flrg = self.flrgs[season-1]
|
||||
flrg = self.flrgs[season]
|
||||
|
||||
mp = self.getMidpoints(flrg)
|
||||
|
||||
|
@ -19,15 +19,15 @@ from numpy import random
|
||||
|
||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
||||
|
||||
enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
|
||||
enrollments = np.array(enrollments["Enrollments"])
|
||||
|
||||
diff = Transformations.Differential(1)
|
||||
|
||||
"""
|
||||
DATASETS
|
||||
"""
|
||||
|
||||
#enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
|
||||
#enrollments = np.array(enrollments["Enrollments"])
|
||||
|
||||
#passengers = pd.read_csv("DataSets/AirPassengers.csv", sep=",")
|
||||
#passengers = np.array(passengers["Passengers"])
|
||||
|
||||
@ -37,8 +37,8 @@ DATASETS
|
||||
#gauss = random.normal(0,1.0,5000)
|
||||
#gauss_teste = random.normal(0,1.0,400)
|
||||
|
||||
taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||
taiex = np.array(taiexpd["avg"][:5000])
|
||||
#taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||
#taiex = np.array(taiexpd["avg"][:5000])
|
||||
|
||||
#nasdaqpd = pd.read_csv("DataSets/NASDAQ_IXIC.csv", sep=",")
|
||||
#nasdaq = np.array(nasdaqpd["avg"][0:5000])
|
||||
@ -52,9 +52,9 @@ taiex = np.array(taiexpd["avg"][:5000])
|
||||
#sonda = np.array(sondapd["glo_avg"])
|
||||
#del(sondapd)
|
||||
|
||||
#bestpd = pd.read_csv("DataSets/BEST_TAVG.csv", sep=";")
|
||||
#best = np.array(bestpd["Anomaly"])
|
||||
#del(bestpd)
|
||||
bestpd = pd.read_csv("DataSets/BEST_TAVG.csv", sep=";")
|
||||
best = np.array(bestpd["Anomaly"])
|
||||
del(bestpd)
|
||||
|
||||
#print(lag)
|
||||
#print(a)
|
||||
@ -135,36 +135,50 @@ bchmk.interval_sliding_window(sp500, 2000, train=0.8, inc=0.2, #models=[yu.Weigh
|
||||
dump=True, save=True, file="experiments/sp500_analytic_diff.csv",
|
||||
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||
|
||||
#"""
|
||||
"""
|
||||
|
||||
bchmk.ahead_sliding_window(taiex, 2000, steps=10, resolution=100, train=0.8, inc=0.1,
|
||||
"""
|
||||
|
||||
bchmk.ahead_sliding_window(best, 4000, steps=10, resolution=100, train=0.8, inc=0.5,
|
||||
partitioners=[Grid.GridPartitioner],
|
||||
partitions= np.arange(10,200,step=10),
|
||||
dump=True, save=True, file="experiments/taiex_ahead_analytic.csv",
|
||||
nodes=['192.168.0.105', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||
dump=True, save=True, file="experiments/best_ahead_analytic.csv",
|
||||
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||
|
||||
bchmk.ahead_sliding_window(taiex, 2000, steps=10, resolution=100, train=0.8, inc=0.1,
|
||||
|
||||
bchmk.ahead_sliding_window(best, 4000, steps=10, resolution=100, train=0.8, inc=0.5,
|
||||
partitioners=[Grid.GridPartitioner],
|
||||
partitions= np.arange(3,20,step=2), transformation=diff,
|
||||
dump=True, save=True, file="experiments/taiex_ahead_analytic_diff.csv",
|
||||
nodes=['192.168.0.105', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||
dump=True, save=True, file="experiments/best_ahead_analytic_diff.csv",
|
||||
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||
|
||||
"""
|
||||
from pyFTS.partitioners import Grid
|
||||
from pyFTS import pwfts
|
||||
from pyFTS.models.seasonal import SeasonalIndexer
|
||||
from pyFTS import sfts
|
||||
|
||||
ix = SeasonalIndexer.LinearSeasonalIndexer([10])
|
||||
|
||||
#print(ix.get_season_of_data(best[:2000]))
|
||||
|
||||
#print(ix.get_season_by_index(45))
|
||||
|
||||
diff = Transformations.Differential(1)
|
||||
|
||||
fs = Grid.GridPartitioner(taiex[:2000], 10, transformation=diff)
|
||||
|
||||
tmp = pwfts.ProbabilisticWeightedFTS("")
|
||||
fs = Grid.GridPartitioner(best[:2000], 10, transformation=diff)
|
||||
|
||||
tmp = sfts.SeasonalFTS("")
|
||||
tmp.indexer = ix
|
||||
tmp.appendTransformation(diff)
|
||||
|
||||
tmp.train(taiex[:1600], fs.sets, order=1)
|
||||
#tmp = pwfts.ProbabilisticWeightedFTS("")
|
||||
|
||||
x = tmp.forecastInterval(taiex[1600:1610])
|
||||
#tmp.appendTransformation(diff)
|
||||
|
||||
print(taiex[1600:1610])
|
||||
tmp.train(best[:1600], fs.sets, order=1)
|
||||
|
||||
x = tmp.forecast(best[1600:1610])
|
||||
|
||||
#print(taiex[1600:1610])
|
||||
print(x)
|
||||
#"""
|
Loading…
Reference in New Issue
Block a user