- SeasonalIndexer on sfts
This commit is contained in:
parent
d1b18ef5c4
commit
8efd7c38d8
@ -438,6 +438,9 @@ def run_ahead(mfts, partitioner, train_data, test_data, steps, resolution, windo
|
|||||||
if transformation is not None:
|
if transformation is not None:
|
||||||
mfts.appendTransformation(transformation)
|
mfts.appendTransformation(transformation)
|
||||||
|
|
||||||
|
if mfts.has_seasonality:
|
||||||
|
mfts.indexer = indexer
|
||||||
|
|
||||||
try:
|
try:
|
||||||
_start = time.time()
|
_start = time.time()
|
||||||
mfts.train(train_data, partitioner.sets, order=mfts.order)
|
mfts.train(train_data, partitioner.sets, order=mfts.order)
|
||||||
@ -553,7 +556,7 @@ def ahead_sliding_window(data, windowsize, steps, resolution, train=0.8, inc=0.1
|
|||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
benchmarks_only[m.shortname] = m
|
benchmarks_only[m.shortname] = m
|
||||||
job = cluster.submit(m, data_train_fs, train, test, steps, resolution, ct, transformation)
|
job = cluster.submit(m, data_train_fs, train, test, steps, resolution, ct, transformation, indexer)
|
||||||
job.id = id # associate an ID to identify jobs (if needed later)
|
job.id = id # associate an ID to identify jobs (if needed later)
|
||||||
jobs.append(job)
|
jobs.append(job)
|
||||||
|
|
||||||
|
1
fts.py
1
fts.py
@ -36,6 +36,7 @@ class FTS(object):
|
|||||||
self.partitioner = None
|
self.partitioner = None
|
||||||
self.auto_update = False
|
self.auto_update = False
|
||||||
self.benchmark_only = False
|
self.benchmark_only = False
|
||||||
|
self.indexer = None
|
||||||
|
|
||||||
def fuzzy(self, data):
|
def fuzzy(self, data):
|
||||||
"""
|
"""
|
||||||
|
@ -30,19 +30,22 @@ class LinearSeasonalIndexer(SeasonalIndexer):
|
|||||||
self.seasons = seasons
|
self.seasons = seasons
|
||||||
|
|
||||||
def get_season_of_data(self,data):
|
def get_season_of_data(self,data):
|
||||||
return self.get_season_by_index(np.arange(0,len(data)))
|
return self.get_season_by_index(np.arange(0, len(data)).tolist())
|
||||||
|
|
||||||
def get_season_by_index(self,index):
|
def get_season_by_index(self,index):
|
||||||
ret = []
|
ret = []
|
||||||
|
if not isinstance(index, (list, np.ndarray)):
|
||||||
|
season = (index % self.seasons[0]) + 1
|
||||||
|
else:
|
||||||
for ix in index:
|
for ix in index:
|
||||||
if self.num_seasons == 1:
|
if self.num_seasons == 1:
|
||||||
season = ix % self.seasons
|
season = (ix % self.seasons[0])
|
||||||
else:
|
else:
|
||||||
season = []
|
season = []
|
||||||
for seasonality in self.seasons:
|
for seasonality in self.seasons:
|
||||||
print("S ", seasonality)
|
#print("S ", seasonality)
|
||||||
tmp = ix // seasonality
|
tmp = ix // seasonality
|
||||||
print("T ", tmp)
|
#print("T ", tmp)
|
||||||
season.append(tmp)
|
season.append(tmp)
|
||||||
#season.append(rest)
|
#season.append(rest)
|
||||||
|
|
||||||
|
29
sfts.py
29
sfts.py
@ -46,28 +46,24 @@ class SeasonalFTS(fts.FTS):
|
|||||||
self.is_high_order = False
|
self.is_high_order = False
|
||||||
|
|
||||||
def generateFLRG(self, flrs):
|
def generateFLRG(self, flrs):
|
||||||
flrgs = []
|
flrgs = {}
|
||||||
season = 1
|
for ct, flr in enumerate(flrs, start=1):
|
||||||
for flr in flrs:
|
|
||||||
|
|
||||||
if len(flrgs) < self.seasonality:
|
season = self.indexer.get_season_by_index(ct)[0]
|
||||||
flrgs.append(SeasonalFLRG(season))
|
|
||||||
|
if season not in flrgs:
|
||||||
|
flrgs[season] = SeasonalFLRG(season)
|
||||||
|
|
||||||
#print(season)
|
#print(season)
|
||||||
flrgs[season-1].append(flr.RHS)
|
flrgs[season].append(flr.RHS)
|
||||||
|
|
||||||
season = (season + 1) % (self.seasonality + 1)
|
|
||||||
|
|
||||||
if season == 0: season = 1
|
|
||||||
|
|
||||||
return (flrgs)
|
return (flrgs)
|
||||||
|
|
||||||
def train(self, data, sets, order=1,parameters=12):
|
def train(self, data, sets, order=1, parameters=None):
|
||||||
self.sets = sets
|
self.sets = sets
|
||||||
self.seasonality = parameters
|
|
||||||
ndata = self.doTransformations(data)
|
ndata = self.doTransformations(data)
|
||||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
flrs = FLR.generateNonRecurrentFLRs(tmpdata)
|
||||||
self.flrgs = self.generateFLRG(flrs)
|
self.flrgs = self.generateFLRG(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
@ -79,13 +75,10 @@ class SeasonalFTS(fts.FTS):
|
|||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
for k in np.arange(1, l):
|
for k in np.arange(1, l):
|
||||||
#flrg = self.flrgs[ndata[k]]
|
|
||||||
|
|
||||||
season = (k + 1) % (self.seasonality + 1)
|
season = self.indexer.get_season_by_index(k)[0]
|
||||||
|
|
||||||
#print(season)
|
flrg = self.flrgs[season]
|
||||||
|
|
||||||
flrg = self.flrgs[season-1]
|
|
||||||
|
|
||||||
mp = self.getMidpoints(flrg)
|
mp = self.getMidpoints(flrg)
|
||||||
|
|
||||||
|
@ -19,15 +19,15 @@ from numpy import random
|
|||||||
|
|
||||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
||||||
|
|
||||||
enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
|
|
||||||
enrollments = np.array(enrollments["Enrollments"])
|
|
||||||
|
|
||||||
diff = Transformations.Differential(1)
|
diff = Transformations.Differential(1)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
DATASETS
|
DATASETS
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
#enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
|
||||||
|
#enrollments = np.array(enrollments["Enrollments"])
|
||||||
|
|
||||||
#passengers = pd.read_csv("DataSets/AirPassengers.csv", sep=",")
|
#passengers = pd.read_csv("DataSets/AirPassengers.csv", sep=",")
|
||||||
#passengers = np.array(passengers["Passengers"])
|
#passengers = np.array(passengers["Passengers"])
|
||||||
|
|
||||||
@ -37,8 +37,8 @@ DATASETS
|
|||||||
#gauss = random.normal(0,1.0,5000)
|
#gauss = random.normal(0,1.0,5000)
|
||||||
#gauss_teste = random.normal(0,1.0,400)
|
#gauss_teste = random.normal(0,1.0,400)
|
||||||
|
|
||||||
taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
#taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||||
taiex = np.array(taiexpd["avg"][:5000])
|
#taiex = np.array(taiexpd["avg"][:5000])
|
||||||
|
|
||||||
#nasdaqpd = pd.read_csv("DataSets/NASDAQ_IXIC.csv", sep=",")
|
#nasdaqpd = pd.read_csv("DataSets/NASDAQ_IXIC.csv", sep=",")
|
||||||
#nasdaq = np.array(nasdaqpd["avg"][0:5000])
|
#nasdaq = np.array(nasdaqpd["avg"][0:5000])
|
||||||
@ -52,9 +52,9 @@ taiex = np.array(taiexpd["avg"][:5000])
|
|||||||
#sonda = np.array(sondapd["glo_avg"])
|
#sonda = np.array(sondapd["glo_avg"])
|
||||||
#del(sondapd)
|
#del(sondapd)
|
||||||
|
|
||||||
#bestpd = pd.read_csv("DataSets/BEST_TAVG.csv", sep=";")
|
bestpd = pd.read_csv("DataSets/BEST_TAVG.csv", sep=";")
|
||||||
#best = np.array(bestpd["Anomaly"])
|
best = np.array(bestpd["Anomaly"])
|
||||||
#del(bestpd)
|
del(bestpd)
|
||||||
|
|
||||||
#print(lag)
|
#print(lag)
|
||||||
#print(a)
|
#print(a)
|
||||||
@ -135,36 +135,50 @@ bchmk.interval_sliding_window(sp500, 2000, train=0.8, inc=0.2, #models=[yu.Weigh
|
|||||||
dump=True, save=True, file="experiments/sp500_analytic_diff.csv",
|
dump=True, save=True, file="experiments/sp500_analytic_diff.csv",
|
||||||
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||||
|
|
||||||
#"""
|
"""
|
||||||
|
|
||||||
bchmk.ahead_sliding_window(taiex, 2000, steps=10, resolution=100, train=0.8, inc=0.1,
|
"""
|
||||||
|
|
||||||
|
bchmk.ahead_sliding_window(best, 4000, steps=10, resolution=100, train=0.8, inc=0.5,
|
||||||
partitioners=[Grid.GridPartitioner],
|
partitioners=[Grid.GridPartitioner],
|
||||||
partitions= np.arange(10,200,step=10),
|
partitions= np.arange(10,200,step=10),
|
||||||
dump=True, save=True, file="experiments/taiex_ahead_analytic.csv",
|
dump=True, save=True, file="experiments/best_ahead_analytic.csv",
|
||||||
nodes=['192.168.0.105', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||||
|
|
||||||
bchmk.ahead_sliding_window(taiex, 2000, steps=10, resolution=100, train=0.8, inc=0.1,
|
|
||||||
|
bchmk.ahead_sliding_window(best, 4000, steps=10, resolution=100, train=0.8, inc=0.5,
|
||||||
partitioners=[Grid.GridPartitioner],
|
partitioners=[Grid.GridPartitioner],
|
||||||
partitions= np.arange(3,20,step=2), transformation=diff,
|
partitions= np.arange(3,20,step=2), transformation=diff,
|
||||||
dump=True, save=True, file="experiments/taiex_ahead_analytic_diff.csv",
|
dump=True, save=True, file="experiments/best_ahead_analytic_diff.csv",
|
||||||
nodes=['192.168.0.105', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||||
|
|
||||||
"""
|
"""
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
from pyFTS import pwfts
|
from pyFTS.models.seasonal import SeasonalIndexer
|
||||||
|
from pyFTS import sfts
|
||||||
|
|
||||||
|
ix = SeasonalIndexer.LinearSeasonalIndexer([10])
|
||||||
|
|
||||||
|
#print(ix.get_season_of_data(best[:2000]))
|
||||||
|
|
||||||
|
#print(ix.get_season_by_index(45))
|
||||||
|
|
||||||
diff = Transformations.Differential(1)
|
diff = Transformations.Differential(1)
|
||||||
|
|
||||||
fs = Grid.GridPartitioner(taiex[:2000], 10, transformation=diff)
|
fs = Grid.GridPartitioner(best[:2000], 10, transformation=diff)
|
||||||
|
|
||||||
tmp = pwfts.ProbabilisticWeightedFTS("")
|
|
||||||
|
|
||||||
|
tmp = sfts.SeasonalFTS("")
|
||||||
|
tmp.indexer = ix
|
||||||
tmp.appendTransformation(diff)
|
tmp.appendTransformation(diff)
|
||||||
|
|
||||||
tmp.train(taiex[:1600], fs.sets, order=1)
|
#tmp = pwfts.ProbabilisticWeightedFTS("")
|
||||||
|
|
||||||
x = tmp.forecastInterval(taiex[1600:1610])
|
#tmp.appendTransformation(diff)
|
||||||
|
|
||||||
print(taiex[1600:1610])
|
tmp.train(best[:1600], fs.sets, order=1)
|
||||||
|
|
||||||
|
x = tmp.forecast(best[1600:1610])
|
||||||
|
|
||||||
|
#print(taiex[1600:1610])
|
||||||
print(x)
|
print(x)
|
||||||
#"""
|
#"""
|
Loading…
Reference in New Issue
Block a user