Bugfixes on hofts and pwfts
This commit is contained in:
parent
fc2c779266
commit
8d9d0e09c1
@ -458,7 +458,8 @@ class FTS(object):
|
|||||||
return data
|
return data
|
||||||
|
|
||||||
def get_UoD(self):
|
def get_UoD(self):
|
||||||
return [self.original_min, self.original_max]
|
#return [self.original_min, self.original_max]
|
||||||
|
return [self.partitioner.min, self.partitioner.max]
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
"""String representation of the model"""
|
"""String representation of the model"""
|
||||||
|
@ -88,13 +88,13 @@ class HighOrderFTS(fts.FTS):
|
|||||||
self.detail = "Severiano, Silva, Sadaei and Guimarães"
|
self.detail = "Severiano, Silva, Sadaei and Guimarães"
|
||||||
self.is_high_order = True
|
self.is_high_order = True
|
||||||
self.min_order = 1
|
self.min_order = 1
|
||||||
self.order= kwargs.get("order", 2)
|
self.order= kwargs.get("order", self.min_order)
|
||||||
self.lags = kwargs.get("lags", None)
|
self.lags = kwargs.get("lags", None)
|
||||||
self.configure_lags(**kwargs)
|
self.configure_lags(**kwargs)
|
||||||
|
|
||||||
def configure_lags(self, **kwargs):
|
def configure_lags(self, **kwargs):
|
||||||
if "order" in kwargs:
|
if "order" in kwargs:
|
||||||
self.order = kwargs.get("order", 2)
|
self.order = kwargs.get("order", self.min_order)
|
||||||
|
|
||||||
if "lags" in kwargs:
|
if "lags" in kwargs:
|
||||||
self.lags = kwargs.get("lags", None)
|
self.lags = kwargs.get("lags", None)
|
||||||
|
@ -17,21 +17,22 @@ from pyFTS.common import Transformations
|
|||||||
tdiff = Transformations.Differential(1)
|
tdiff = Transformations.Differential(1)
|
||||||
|
|
||||||
|
|
||||||
from pyFTS.data import TAIEX, SP500, NASDAQ, Malaysia
|
from pyFTS.data import TAIEX, SP500, NASDAQ, Malaysia, Enrollments
|
||||||
|
|
||||||
dataset = Malaysia.get_data('temperature')[:1000]
|
train_split = 2000
|
||||||
|
test_length = 200
|
||||||
|
|
||||||
p = Grid.GridPartitioner(data=dataset, npart=20)
|
dataset = TAIEX.get_data()
|
||||||
|
|
||||||
print(p)
|
partitioner = Grid.GridPartitioner(data=dataset[:train_split], npart=35)
|
||||||
|
partitioner_diff = Grid.GridPartitioner(data=dataset[:train_split], npart=5, transformation=tdiff)
|
||||||
|
|
||||||
model = pwfts.ProbabilisticWeightedFTS(partitioner=p, order=2)
|
pfts1_taiex = pwfts.ProbabilisticWeightedFTS(partitioner=partitioner)
|
||||||
|
pfts1_taiex.fit(dataset[:train_split], save_model=True, file_path='pwfts', order=1)
|
||||||
|
pfts1_taiex.shortname = "1st Order"
|
||||||
|
#print(pfts1_taiex)
|
||||||
|
|
||||||
model.fit(dataset) #[22, 22, 23, 23, 24])
|
tmp = pfts1_taiex.predict(dataset[train_split:train_split+200], type='distribution')
|
||||||
|
|
||||||
print(model)
|
|
||||||
|
|
||||||
Measures.get_point_statistics(dataset, model)
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
#dataset = SP500.get_data()[11500:16000]
|
#dataset = SP500.get_data()[11500:16000]
|
||||||
|
Loading…
Reference in New Issue
Block a user