Cascaded transformations in all fts models
This commit is contained in:
parent
15b4aa1137
commit
8b3aceed58
@ -18,7 +18,7 @@ def acf(data, k):
|
||||
|
||||
# Erro quadrático médio
|
||||
def rmse(targets, forecasts):
|
||||
return np.sqrt(np.nanmean((forecasts - targets) ** 2))
|
||||
return np.sqrt(np.nanmean((targets - forecasts) ** 2))
|
||||
|
||||
|
||||
def rmse_interval(targets, forecasts):
|
||||
@ -28,7 +28,16 @@ def rmse_interval(targets, forecasts):
|
||||
|
||||
# Erro Percentual médio
|
||||
def mape(targets, forecasts):
|
||||
return np.mean(abs(forecasts - targets) / forecasts) * 100
|
||||
return np.mean(np.abs(targets - forecasts) / targets) * 100
|
||||
|
||||
|
||||
def smape(targets, forecasts, type=2):
|
||||
if type == 1:
|
||||
return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2))
|
||||
elif type == 2:
|
||||
return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100
|
||||
else:
|
||||
return sum(np.abs(forecasts - targets)) / sum(forecasts + targets)
|
||||
|
||||
|
||||
def mape_interval(targets, forecasts):
|
||||
|
@ -70,3 +70,31 @@ def plotResiduals(targets, models, tam=[8, 8], save=False, file=None):
|
||||
|
||||
Util.showAndSaveImage(fig, file, save)
|
||||
|
||||
|
||||
def plotResiduals2(targets, models, tam=[8, 8], save=False, file=None):
|
||||
fig, axes = plt.subplots(nrows=len(models), ncols=3, figsize=tam)
|
||||
|
||||
for c, mfts in enumerate(models, start=0):
|
||||
forecasts = mfts.forecast(targets)
|
||||
res = residuals(targets, forecasts, mfts.order)
|
||||
mu = np.mean(res)
|
||||
sig = np.std(res)
|
||||
|
||||
if c == 0: axes[c][0].set_title("Residuals", size='large')
|
||||
axes[c][0].set_ylabel(mfts.shortname, size='large')
|
||||
axes[c][0].set_xlabel(' ')
|
||||
axes[c][0].plot(res)
|
||||
|
||||
if c == 0: axes[c][1].set_title("Residuals Autocorrelation", size='large')
|
||||
axes[c][1].set_ylabel('ACS')
|
||||
axes[c][1].set_xlabel('Lag')
|
||||
axes[c][1].acorr(res)
|
||||
|
||||
if c == 0: axes[c][2].set_title("Residuals Histogram", size='large')
|
||||
axes[c][2].set_ylabel('Freq')
|
||||
axes[c][2].set_xlabel('Bins')
|
||||
axes[c][2].hist(res)
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
Util.showAndSaveImage(fig, file, save)
|
||||
|
@ -13,59 +13,74 @@ from pyFTS.partitioners import Grid
|
||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||
from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pfts, ifts
|
||||
|
||||
colors = ['grey', 'rosybrown', 'maroon', 'red','orange', 'yellow', 'olive', 'green',
|
||||
'cyan', 'blue', 'darkblue', 'purple', 'darkviolet']
|
||||
|
||||
def allPointForecasters(data_train, data_test, partitions, max_order=3, statistics=True, residuals=True, series=True,
|
||||
save=False, file=None, tam=[20, 5]):
|
||||
ncol = len(colors)
|
||||
|
||||
styles = ['-','--','-.',':','.']
|
||||
|
||||
nsty = len(styles)
|
||||
|
||||
def allPointForecasters(data_train, data_test, partitions, max_order=3, statistics=True, residuals=True,
|
||||
series=True, save=False, file=None, tam=[20, 5], models=None, transformation=None):
|
||||
|
||||
if models is None:
|
||||
models = [naive.Naive, chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS,
|
||||
sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS, pfts.ProbabilisticFTS]
|
||||
|
||||
objs = []
|
||||
|
||||
all_colors = [clr for clr in pltcolors.cnames.keys() ]
|
||||
|
||||
data_train_fs = Grid.GridPartitionerTrimf(data_train,partitions)
|
||||
if transformation is not None:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(transformation.apply(data_train),partitions)
|
||||
else:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(data_train, partitions)
|
||||
|
||||
count = 1
|
||||
|
||||
colors = []
|
||||
lcolors = []
|
||||
|
||||
for model in models:
|
||||
for count, model in enumerate(models, start=0):
|
||||
#print(model)
|
||||
mfts = model("")
|
||||
if not mfts.isHighOrder:
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
mfts.train(data_train, data_train_fs)
|
||||
objs.append(mfts)
|
||||
colors.append( all_colors[count] )
|
||||
lcolors.append( colors[count % ncol] )
|
||||
else:
|
||||
for order in np.arange(1,max_order+1):
|
||||
if order >= mfts.minOrder:
|
||||
mfts = model(" n = " + str(order))
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
mfts.train(data_train, data_train_fs, order=order)
|
||||
objs.append(mfts)
|
||||
colors.append(all_colors[count])
|
||||
count += 10
|
||||
lcolors.append(colors[count % ncol])
|
||||
|
||||
if statistics:
|
||||
print(getPointStatistics(data_test, objs))
|
||||
|
||||
if residuals:
|
||||
print(ResidualAnalysis.compareResiduals(data_test, objs))
|
||||
ResidualAnalysis.plotResiduals(data_test, objs, save=save, file=file, tam=[tam[0], 5 * tam[1]])
|
||||
ResidualAnalysis.plotResiduals2(data_test, objs, save=save, file=file, tam=tam)
|
||||
|
||||
if series:
|
||||
plotComparedSeries(data_test, objs, colors, typeonlegend=False, save=save, file=file, tam=tam, intervals=False)
|
||||
plotComparedSeries(data_test, objs, lcolors, typeonlegend=False, save=save, file=file, tam=tam,
|
||||
intervals=False)
|
||||
|
||||
|
||||
def getPointStatistics(data, models, externalmodels = None, externalforecasts = None):
|
||||
ret = "Model & Order & RMSE & MAPE & Theil's U & Theil's I \\\\ \n"
|
||||
ret = "Model & Order & RMSE & MAPE & Theil's U \\\\ \n"
|
||||
for fts in models:
|
||||
forecasts = fts.forecast(data)
|
||||
ret += fts.shortname + " & "
|
||||
ret += str(fts.order) + " & "
|
||||
ret += str(round(Measures.rmse(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2)) + " & "
|
||||
ret += str(round(Measures.mape(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))+ " & "
|
||||
ret += str(round(Measures.UStatistic(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))+ " & "
|
||||
ret += str(round(Measures.TheilsInequality(np.array(data[fts.order:]), np.array(forecasts[:-1])), 4))
|
||||
ret += str(round(Measures.smape(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))+ " & "
|
||||
ret += str(round(Measures.UStatistic(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))
|
||||
#ret += str(round(Measures.TheilsInequality(np.array(data[fts.order:]), np.array(forecasts[:-1])), 4))
|
||||
ret += " \\\\ \n"
|
||||
if externalmodels is not None:
|
||||
l = len(externalmodels)
|
||||
@ -73,44 +88,48 @@ def getPointStatistics(data, models, externalmodels = None, externalforecasts =
|
||||
ret += externalmodels[k] + " & "
|
||||
ret += " 1 & "
|
||||
ret += str(round(Measures.rmse(data[fts.order:], externalforecasts[k][:-1]), 2)) + " & "
|
||||
ret += str(round(Measures.mape(data[fts.order:], externalforecasts[k][:-1]), 2))+ " & "
|
||||
ret += str(round(Measures.smape(data[fts.order:], externalforecasts[k][:-1]), 2))+ " & "
|
||||
ret += str(round(Measures.UStatistic(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))
|
||||
ret += " \\\\ \n"
|
||||
return ret
|
||||
|
||||
|
||||
def allIntervalForecasters(data_train, data_test, partitions, max_order=3,save=False, file=None, tam=[20, 5]):
|
||||
def allIntervalForecasters(data_train, data_test, partitions, max_order=3,save=False, file=None, tam=[20, 5],
|
||||
models=None, transformation=None):
|
||||
if models is None:
|
||||
models = [ifts.IntervalFTS, pfts.ProbabilisticFTS]
|
||||
|
||||
objs = []
|
||||
|
||||
all_colors = [clr for clr in pltcolors.cnames.keys() ]
|
||||
if transformation is not None:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(transformation.apply(data_train),partitions)
|
||||
else:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(data_train, partitions)
|
||||
|
||||
data_train_fs = Grid.GridPartitionerTrimf(data_train,partitions)
|
||||
lcolors = []
|
||||
|
||||
count = 1
|
||||
|
||||
colors = []
|
||||
|
||||
for model in models:
|
||||
#print(model)
|
||||
for count, model in enumerate(models, start=0):
|
||||
mfts = model("")
|
||||
if not mfts.isHighOrder:
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
mfts.train(data_train, data_train_fs)
|
||||
objs.append(mfts)
|
||||
colors.append( all_colors[count] )
|
||||
lcolors.append( colors[count % ncol] )
|
||||
else:
|
||||
for order in np.arange(1,max_order+1):
|
||||
if order >= mfts.minOrder:
|
||||
mfts = model(" n = " + str(order))
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
mfts.train(data_train, data_train_fs, order=order)
|
||||
objs.append(mfts)
|
||||
colors.append(all_colors[count])
|
||||
count += 5
|
||||
lcolors.append(colors[count % ncol])
|
||||
|
||||
|
||||
print(getIntervalStatistics(data_test, objs))
|
||||
|
||||
plotComparedSeries(data_test, objs, colors, typeonlegend=False, save=save, file=file, tam=tam, intervals=True)
|
||||
plotComparedSeries(data_test, objs, lcolors, typeonlegend=False, save=save, file=file, tam=tam, intervals=True)
|
||||
|
||||
|
||||
def getIntervalStatistics(original, models):
|
||||
@ -142,9 +161,11 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
||||
mi = []
|
||||
ma = []
|
||||
|
||||
legends = []
|
||||
|
||||
ax.plot(original, color='black', label="Original", linewidth=1.5)
|
||||
count = 0
|
||||
for fts in models:
|
||||
|
||||
for count, fts in enumerate(models, start=0):
|
||||
if fts.hasPointForecasting and not intervals:
|
||||
forecasted = fts.forecast(original)
|
||||
mi.append(min(forecasted) * 0.95)
|
||||
@ -170,15 +191,16 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
||||
ax.plot(upper, color=colors[count], ls="-")
|
||||
|
||||
handles0, labels0 = ax.get_legend_handles_labels()
|
||||
ax.legend(handles0, labels0, loc=2)
|
||||
count = count + 1
|
||||
lgd = ax.legend(handles0, labels0, loc=2, bbox_to_anchor=(1, 1))
|
||||
legends.append(lgd)
|
||||
|
||||
# ax.set_title(fts.name)
|
||||
ax.set_ylim([min(mi), max(ma)])
|
||||
ax.set_ylabel('F(T)')
|
||||
ax.set_xlabel('T')
|
||||
ax.set_xlim([0, len(original)])
|
||||
|
||||
Util.showAndSaveImage(fig, file, save)
|
||||
Util.showAndSaveImage(fig, file, save, lgd=legends)
|
||||
|
||||
|
||||
def plotComparedIntervalsAhead(original, models, colors, distributions, time_from, time_to,
|
||||
@ -530,7 +552,7 @@ def compareModelsTable(original, models_fo, models_ho):
|
||||
return sup + header + body + "\\end{tabular}"
|
||||
|
||||
|
||||
def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None, tam=[10, 15], plotforecasts=False,
|
||||
def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=None, tam=[10, 15], plotforecasts=False,
|
||||
elev=30, azim=144):
|
||||
ret = []
|
||||
errors = np.array([[0 for k in range(len(partitions))] for kk in range(len(orders))])
|
||||
@ -539,8 +561,8 @@ def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None
|
||||
# fig.suptitle("Comparação de modelos ")
|
||||
if plotforecasts:
|
||||
ax0 = fig.add_axes([0, 0.4, 0.9, 0.5]) # left, bottom, width, height
|
||||
ax0.set_xlim([0, len(original)])
|
||||
ax0.set_ylim([min(original) * 0.9, max(original) * 1.1])
|
||||
ax0.set_xlim([0, len(train)])
|
||||
ax0.set_ylim([min(train) * 0.9, max(train) * 1.1])
|
||||
ax0.set_title('Forecasts')
|
||||
ax0.set_ylabel('F(T)')
|
||||
ax0.set_xlabel('T')
|
||||
@ -550,13 +572,13 @@ def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None
|
||||
for p in partitions:
|
||||
oc = 0
|
||||
for o in orders:
|
||||
sets = Grid.GridPartitionerTrimf(original, p)
|
||||
sets = Grid.GridPartitionerTrimf(train, p)
|
||||
fts = model("q = " + str(p) + " n = " + str(o))
|
||||
fts.train(original, sets, o)
|
||||
forecasted = fts.forecast(original)
|
||||
error = Measures.rmse(np.array(original[o:]), np.array(forecasted[:-1]))
|
||||
mape = Measures.mape(np.array(original[o:]), np.array(forecasted[:-1]))
|
||||
# print(original[o:])
|
||||
fts.train(train, sets, o)
|
||||
forecasted = fts.forecast(test)
|
||||
error = Measures.rmse(np.array(test[o:]), np.array(forecasted[:-1]))
|
||||
mape = Measures.mape(np.array(test[o:]), np.array(forecasted[:-1]))
|
||||
# print(train[o:])
|
||||
# print(forecasted[-1])
|
||||
for kk in range(o):
|
||||
forecasted.insert(0, None)
|
||||
@ -573,7 +595,7 @@ def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None
|
||||
if plotforecasts:
|
||||
# handles0, labels0 = ax0.get_legend_handles_labels()
|
||||
# ax0.legend(handles0, labels0)
|
||||
ax0.plot(original, label="Original", linewidth=3.0, color="black")
|
||||
ax0.plot(test, label="Original", linewidth=3.0, color="black")
|
||||
ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
||||
if not plotforecasts: ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
||||
# ax1 = fig.add_axes([0.6, 0.5, 0.45, 0.45], projection='3d')
|
||||
|
7
chen.py
7
chen.py
@ -40,13 +40,14 @@ class ConventionalFTS(fts.FTS):
|
||||
|
||||
def train(self, data, sets,order=1,parameters=None):
|
||||
self.sets = sets
|
||||
tmpdata = FuzzySet.fuzzySeries(data, sets)
|
||||
ndata = self.doTransformations(data)
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||
flrs = FLR.generateNonRecurrentFLRs(tmpdata)
|
||||
self.flrgs = self.generateFLRG(flrs)
|
||||
|
||||
def forecast(self, data):
|
||||
|
||||
ndata = np.array(data)
|
||||
ndata = np.array(self.doTransformations(data))
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -66,4 +67,6 @@ class ConventionalFTS(fts.FTS):
|
||||
|
||||
ret.append(sum(mp) / len(mp))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
@ -8,6 +8,7 @@ class Transformation(object):
|
||||
def __init__(self, parameters):
|
||||
self.isInversible = True
|
||||
self.parameters = parameters
|
||||
self.minimalLength = 1
|
||||
|
||||
def apply(self,data,param):
|
||||
pass
|
||||
@ -24,6 +25,7 @@ class Differential(Transformation):
|
||||
def __init__(self, parameters):
|
||||
super(Differential, self).__init__(parameters)
|
||||
self.lag = parameters
|
||||
self.minimalLength = 2
|
||||
|
||||
def apply(self, data, param=None):
|
||||
if param is not None:
|
||||
@ -31,12 +33,12 @@ class Differential(Transformation):
|
||||
n = len(data)
|
||||
diff = [data[t - self.lag] - data[t] for t in np.arange(self.lag, n)]
|
||||
for t in np.arange(0, self.lag): diff.insert(0, 0)
|
||||
return np.array(diff)
|
||||
return diff
|
||||
|
||||
def inverse(self,data, param):
|
||||
n = len(data)
|
||||
inc = [data[t] + param[t] for t in np.arange(1, n)]
|
||||
return np.array(inc)
|
||||
return inc
|
||||
|
||||
|
||||
def boxcox(original, plambda):
|
||||
|
@ -13,8 +13,11 @@ def uniquefilename(name):
|
||||
return name + str(current_milli_time())
|
||||
|
||||
|
||||
def showAndSaveImage(fig,file,flag):
|
||||
def showAndSaveImage(fig,file,flag,lgd=None):
|
||||
if flag:
|
||||
plt.show()
|
||||
if lgd is not None:
|
||||
fig.savefig(uniquefilename(file), additional_artists=lgd,bbox_inches='tight') #bbox_extra_artists=(lgd,), )
|
||||
else:
|
||||
fig.savefig(uniquefilename(file))
|
||||
plt.close(fig)
|
14
fts.py
14
fts.py
@ -61,23 +61,23 @@ class FTS(object):
|
||||
|
||||
def doTransformations(self,data,params=None):
|
||||
ndata = data
|
||||
if len(self.transformations) > 0:
|
||||
if params is None:
|
||||
params = [ None for k in self.transformations]
|
||||
c = 0
|
||||
for t in self.transformations:
|
||||
|
||||
for c, t in enumerate(self.transformations, start=0):
|
||||
ndata = t.apply(ndata,params[c])
|
||||
c += 1
|
||||
|
||||
return ndata
|
||||
|
||||
def doInverseTransformations(self,data,params=None):
|
||||
def doInverseTransformations(self, data, params=None):
|
||||
ndata = data
|
||||
if len(self.transformations) > 0:
|
||||
if params is None:
|
||||
params = [None for k in self.transformations]
|
||||
c = 0
|
||||
for t in reversed(self.transformations):
|
||||
|
||||
for c, t in enumerate(reversed(self.transformations), start=0):
|
||||
ndata = t.inverse(ndata, params[c])
|
||||
c += 1
|
||||
|
||||
return ndata
|
||||
|
||||
|
9
hofts.py
9
hofts.py
@ -61,6 +61,9 @@ class HighOrderFTS(fts.FTS):
|
||||
return (flrgs)
|
||||
|
||||
def train(self, data, sets, order=1,parameters=None):
|
||||
|
||||
data = self.doTransformations(data)
|
||||
|
||||
self.order = order
|
||||
self.sets = sets
|
||||
for s in self.sets: self.setsDict[s.name] = s
|
||||
@ -81,8 +84,10 @@ class HighOrderFTS(fts.FTS):
|
||||
if l <= self.order:
|
||||
return data
|
||||
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
for k in np.arange(self.order, l+1):
|
||||
tmpdata = FuzzySet.fuzzySeries(data[k - self.order: k], self.sets)
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata[k - self.order: k], self.sets)
|
||||
tmpflrg = HighOrderFLRG(self.order)
|
||||
|
||||
for s in tmpdata: tmpflrg.appendLHS(s)
|
||||
@ -95,4 +100,6 @@ class HighOrderFTS(fts.FTS):
|
||||
|
||||
ret.append(sum(mp) / len(mp))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order-1:]])
|
||||
|
||||
return ret
|
||||
|
11
hwang.py
11
hwang.py
@ -13,6 +13,9 @@ class HighOrderFTS(fts.FTS):
|
||||
self.detail = "Hwang"
|
||||
|
||||
def forecast(self, data):
|
||||
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
cn = np.array([0.0 for k in range(len(self.sets))])
|
||||
ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
|
||||
rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
|
||||
@ -20,12 +23,12 @@ class HighOrderFTS(fts.FTS):
|
||||
|
||||
ret = []
|
||||
|
||||
for t in np.arange(self.order-1, len(data)):
|
||||
for t in np.arange(self.order-1, len(ndata)):
|
||||
|
||||
for s in range(len(self.sets)):
|
||||
cn[s] = self.sets[s].membership(data[t])
|
||||
cn[s] = self.sets[s].membership(ndata[t])
|
||||
for w in range(self.order - 1):
|
||||
ow[w, s] = self.sets[s].membership(data[t - w])
|
||||
ow[w, s] = self.sets[s].membership(ndata[t - w])
|
||||
rn[w, s] = ow[w, s] * cn[s]
|
||||
ft[s] = max(ft[s], rn[w, s])
|
||||
mft = max(ft)
|
||||
@ -37,6 +40,8 @@ class HighOrderFTS(fts.FTS):
|
||||
count += 1.0
|
||||
ret.append(out / count)
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
||||
def train(self, data, sets, order=1, parameters=None):
|
||||
|
8
ifts.py
8
ifts.py
@ -49,7 +49,9 @@ class IntervalFTS(hofts.HighOrderFTS):
|
||||
|
||||
def forecastInterval(self, data):
|
||||
|
||||
ndata = np.array(data)
|
||||
data = np.array(data)
|
||||
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -113,6 +115,8 @@ class IntervalFTS(hofts.HighOrderFTS):
|
||||
|
||||
# gerar o intervalo
|
||||
norm = sum(affected_flrgs_memberships)
|
||||
ret.append([sum(lo) / norm, sum(up) / norm])
|
||||
lo_ = self.doInverseTransformations(sum(lo) / norm, param=[data[k - (self.order - 1): k + 1]])
|
||||
up_ = self.doInverseTransformations(sum(up) / norm, param=[data[k - (self.order - 1): k + 1]])
|
||||
ret.append([lo_, up_])
|
||||
|
||||
return ret
|
||||
|
@ -51,7 +51,9 @@ class ImprovedWeightedFTS(fts.FTS):
|
||||
|
||||
for s in self.sets: self.setsDict[s.name] = s
|
||||
|
||||
tmpdata = FuzzySet.fuzzySeries(data, self.sets)
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, self.sets)
|
||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
||||
self.flrgs = self.generateFLRG(flrs)
|
||||
|
||||
@ -62,7 +64,8 @@ class ImprovedWeightedFTS(fts.FTS):
|
||||
def forecast(self, data):
|
||||
l = 1
|
||||
|
||||
ndata = np.array(data)
|
||||
data = np.array(data)
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -82,4 +85,6 @@ class ImprovedWeightedFTS(fts.FTS):
|
||||
|
||||
ret.append(mp.dot(flrg.weights()))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
12
pfts.py
12
pfts.py
@ -112,7 +112,7 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
||||
|
||||
def forecast(self, data):
|
||||
|
||||
ndata = np.array(data)
|
||||
ndata = np.array(self.doTransformations(data))
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -208,11 +208,15 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
||||
else:
|
||||
ret.append(sum(mp) / norm)
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
||||
def forecastInterval(self, data):
|
||||
|
||||
ndata = np.array(data)
|
||||
data = np.array(data)
|
||||
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -308,7 +312,9 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
||||
if norm == 0:
|
||||
ret.append([0, 0])
|
||||
else:
|
||||
ret.append([sum(lo) / norm, sum(up) / norm])
|
||||
lo_ = self.doInverseTransformations(sum(lo) / norm, params=[data[k - (self.order - 1): k + 1]])
|
||||
up_ = self.doInverseTransformations(sum(up) / norm, params=[data[k - (self.order - 1): k + 1]])
|
||||
ret.append([lo_, up_])
|
||||
|
||||
return ret
|
||||
|
||||
|
@ -52,14 +52,17 @@ class ExponentialyWeightedFTS(fts.FTS):
|
||||
def train(self, data, sets,order=1,parameters=2):
|
||||
self.c = parameters
|
||||
self.sets = sets
|
||||
tmpdata = FuzzySet.fuzzySeries(data, sets)
|
||||
ndata = self.doTransformations(data)
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
||||
self.flrgs = self.generateFLRG(flrs, self.c)
|
||||
|
||||
def forecast(self, data):
|
||||
l = 1
|
||||
|
||||
ndata = np.array(data)
|
||||
data = np.array(data)
|
||||
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -79,4 +82,6 @@ class ExponentialyWeightedFTS(fts.FTS):
|
||||
|
||||
ret.append(mp.dot(flrg.weights()))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
9
sfts.py
9
sfts.py
@ -47,13 +47,16 @@ class SeasonalFTS(fts.FTS):
|
||||
def train(self, data, sets, order=1,parameters=12):
|
||||
self.sets = sets
|
||||
self.seasonality = parameters
|
||||
tmpdata = FuzzySet.fuzzySeries(data, sets)
|
||||
ndata = self.doTransformations(data)
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
||||
self.flrgs = self.generateFLRG(flrs)
|
||||
|
||||
def forecast(self, data):
|
||||
|
||||
ndata = np.array(data)
|
||||
data = np.array(data)
|
||||
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -66,4 +69,6 @@ class SeasonalFTS(fts.FTS):
|
||||
|
||||
ret.append(sum(mp) / len(mp))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
9
yu.py
9
yu.py
@ -48,14 +48,17 @@ class WeightedFTS(fts.FTS):
|
||||
|
||||
def train(self, data, sets,order=1,parameters=None):
|
||||
self.sets = sets
|
||||
tmpdata = FuzzySet.fuzzySeries(data, sets)
|
||||
ndata = self.doTransformations(data)
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
||||
self.flrgs = self.generateFLRG(flrs)
|
||||
|
||||
def forecast(self, data):
|
||||
l = 1
|
||||
|
||||
ndata = np.array(data)
|
||||
data = np.array(data)
|
||||
|
||||
ndata = self.doTransformations(data)
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
@ -75,4 +78,6 @@ class WeightedFTS(fts.FTS):
|
||||
|
||||
ret.append(mp.dot(flrg.weights()))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
Loading…
Reference in New Issue
Block a user